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Abstract— This numerical study focuses on the steady, laminar flow of a non-Newtonian nanofluid inside a pipe 

maintained at a constant wall temperature. The nanofluid is composed of silver nanoparticles dispersed in a 

polyethylene melt, whose behavior follows the Carreau-Yasuda rheological model with constant physical and 

rheological properties. The governing equations of continuity, momentum and energy are solved using an in-house 

computational code based on the finite volume method. The results indicate that increasing the nanoparticle 

volume fraction has a beneficial effect on heat transfer but adversely affects the pressure drop since the Fanning 

friction factor increases. Furthermore, a higher Weissenberg number leads to a reduction in the centerline 

velocity, thereby decreasing the pressure drop. However, it has a negligible influence on the flow’s thermal 

characteristics. 
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I. INTRODUCTION 

The Carreau-Yasuda rheological model was introduced in order to allow the adjustment of a rheogram over 

the entire shear range of shear-thinning fluids since the power law model poorly describes the behavior of the 

fluid at low shear rates. This model well describes the behavior of certain fluids, including polymers. 

Therefore, the flow of this non-Newtonian fluid through different geometries has been the subject of extensive 

research. Shamkhi et al. [1] studied numerically, using the PIM meshfree method combined with a 

characteristic algorithm based on split-A, the flow of a viscous non-Newtonian fluid following the rheological 

model of Carreau in a cavity. The authors observed a good consistency between the results obtained by the 

method and the results obtained from the use of the finite volume method for the limiting case of a Newtonian 

fluid. As revealed by the results, the shear-thinning nature of the fluid strongly affects its flow dynamics 

inside the cavity. Alloui and Vasseur [2] conducted a numerical analysis of free convection in a vertically 

oriented cavity containing a non-Newtonian fluid obeying the Carreau-Yasuda rheological model. Neumann-

type thermal boundary conditions were applied to the cavity’s vertical walls, though the horizontal walls were 

supposed to be insulated. The authors also studied the same configuration using the power law rheological 

model and then compared the flow of both fluids. The results indicate a pronounced effect of the fluid’s 

pseudoplasticity on the flow behavior. Khellaf and Laurait [3] considered in their numerical study forced, 

natural, and mixed convection of a Carreau fluid inside two vertical concentric cylinders; the internal cylinder 

is heated and in rotation, and the external cylinder is kept cool and motionless. The work examined the impact 

of the flow index, the Weissenberg and Prandtl numbers, and the radii quotient. The results show that the 

friction coefficient at the rotating tube and heat exchange in the annular space increase. It has been noted, 

furthermore, that decreasing the apparent viscosity can produce oscillatory flows, particularly in forced 

convection by centrifugation. Rousset et al. [4] studied the unsteady stability of Carreau fluid flow over an 

inclined plane. They analyzed the impact of shear-thinning fluid characteristics on stability determination. 

Their results show that this fluid exhibits a lower critical Reynolds number than Newtonian fluids. Abbasi et 

al. [5] undertook a numerical study on the impact of a magnetic field, including the Hall current, on the 

peristaltic flow of Carreau fluid through a curved conduit, taking into account the Hall Effect. The formulation 

of the problem relied on lubrication assumptions. The results reveal that, for low values of the pipe’s curvature, 
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the fluid velocity profile becomes asymmetric around the median. Furthermore, increasing the Hall parameter 

moderates the magnetic influence of the applied field. Lounis et al. [6] numerically examined Carreau-Yasuda 

fluid thermosolutal convection in an inclined square cavity, considering Soret and Dufour effects. Constant 

and uniform concentration and temperature were imposed on the active walls while others were insulated and 

impermeable. They found that increasing the time constant parameter and decreasing the ratio of infinite-to-

zero shear rate viscosities led to improved heat and mass transfer for various flow index values. Moreover, the 

rates of thermal and solutal exchange were enhanced as the inclination angle increased from 0° to 90°. 

Convective heat transfer enhancement has been widely investigated in the literature. Indeed, a large number 

of scientists have carried out numerous numerical and experimental investigations relating to the description 

of the phenomena, geometry, and physicochemical properties of the fluids. Although more improvement 

strategies have focused on the geometry of the systems and the physicochemical nature of the convective 

media, the studies primarily focused on the macroscopic, and occasionally microscopic, aspects of the process. 

However, since the rise of nanosciences and nanotechnologies in the latter part of the 20th century, convection 

has evolved to incorporate new enhancement strategies derived from these fields: recent works have been 

focused on the nanometric level of matter in the convective environment [7-9]. Thus, nanoparticles were 

introduced into Newtonian or non-Newtonian base fluids. It is worth noting that their addition to fluids could 

completely change the behavior of the latter. Furthermore, the addition of nanoparticles is beneficial from a 

thermal point of view, but not from a hydrodynamic point of view. 

Some research has been undertaken considering non-Newtonian nanofluids [10-13]. For Carreau-Yasuda 

nanofluids, Nisar et al. [14] studied numerically the peristaltic mixed convective motion of Carreau-Yasuda 

nanofluid through a pipe in the presence of slip conditions by considering a modified Darcy's expression for 

porous space, the Brownian motion, as well as thermophoresis. In addition, the outcomes of first-order 

chemical reactions and radiation were investigated. They found that the fluid velocity increases for great 

values of the velocity slip parameter and Weissenberg number, and that heat transfer rate is improved when 

Brownian motion and thermophoresis are significant. Bilal et al. [15] studied heat transfer in a Carreau-

Yasuda-based ternary hybrid nanofluid under a magnetic dipole field across a vertical stretching sheet. The 

analysis of thermal and velocity fields was carried out considering the combined influence of internal heat 

generation/sink and Darcy-Forchheimer. The results revealed that the skin friction and the Nusselt number are 

enhanced by the flow index increase, while higher Darcy-Forchheimer and porosity parameters reduce the 

velocity profiles. In addition, the hybrid nanofluid revealed higher heat transfer performance over the base 

fluid across the vertical plate. Akbar et al. [16] investigated the two-dimensional, laminar MHD flow of a 

Carreau-Yasuda nanofluid over a stretching sheet, driven by surface extension and incorporating quadratic 

convection. The study also accounted for the effect of variable thermal conductivity and internal heat 

generation. The analysis reveals that the fluid velocity decreases with increasing magnetic parameter, 

Brownian motion coefficient and Prandtl number. In contrast, thermal performance improves with higher 

values of the thermophoretic parameter, variable thermal conductivity and heat generation coefficient. Zid et 

al. [17] presented a numerical investigation, using the finite difference method, of magnetohydrodynamic free 

convection involving a shear-thinning SWCNT/water nanofluid, inside a differential heated square porous 

cavity exposed to a magnetic field. They found that heat and flow behavior are strongly affected by the 

Carreau-Yasuda the rheological properties and that higher concentrations of nanoparticles raise the fluid’s 

effective viscosity and improve heat transfer. The study shows moreover that the Lorentz force suppresses the 

shear-thinning nature of the nanofluid and that the maximum convection performance are obtained for an 

inclination angle of 30. 

In order to contribute to this field of research, and as far as we know, there are few studies that deal with the 

flow of Carreau-Yasuda nanofluids within pipes, we present this numerical investigation. It is about the 

analysis of the hydrodynamic and thermal behavior of a Carreau-Yasuda fluid flow within a pipe under the 

effect of the addition of nanoparticles and the rheological properties (Weissenberg number) variation. 

II. GOVERNING EQUATIONS AND NUMERICAL APPROACH 

The stud y focuses on the steady-state axisymmetric laminar flow of an incompressible non-Newtonian 

nanofluid within a circular pipe of length L and diameter D. The dilute nanofluid mixture is considered to 

have uniform physical and rheological properties. 
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A. Problem statement and nanofluid’s thermophysical and rheological properties 

The non-Newtonian nanofluid analyzed in the present study consists of a non-Newtonian liquid obeying the 

rheological model of Carreau-Yasuda, containing suspended nanoparticles. In order to approach reality, we 

consider silver (Ag) as nanoparticles and the polyethylene melt as a base liquid which follow the Carreau-

Yasuda constitutive equation; both are in thermal equilibrium locally. 

According to Ansari et al. [18], the polyethylene melt behaves like a Carreau-Yasuda fluid. Its physical and 

rheological properties are given in Table 1 at a temperature of 160 °C. 

On the other hand, we evaluate the physical properties of Ag nanoparticles at the considered temperature 

(160 °C) using curves given by Smith and Fickett [19] showing the dependence of Ag nanoparticles physical 

properties on temperature (Table 1). 

 

TABLE I 

PHYSICAL AND RHEOLOGICAL PROPERTIES OF SILVER NANOPARTICLES (AG) AND POLYETHYLENE MELT AT 160 °C. 

 
Ag nano-particles 

[19] 

Polyethylene melt 

[18] 

Density (kg/m3) 10420 782.8 

Specific heat (J/kg K) 242.95 2250 

Thermal conductivity (W/m K) 381.88 0.170 

Viscosity (kg/m s) - 617.230 (0) 

Carreau power law index, n - 0.221 

Relaxation time,   (s) - 17.727 

Yasuda exponent,  a - 0.215 

 

In order to analyze the flow within the pipe, it is necessary to know the thermophysical properties of the 

nanofluid, which are: density, thermal conductivity and viscosity. The density (nf) and specific heat (Cpnf) are 

given by the following most-used expressions based on the mixture theory given by Pak and Choi [20]: 

 
pfnf )1( 
  

pPfPnfP )C()C()1()C( 
 

 represents the nanoparticle volume fraction, f and p are respectively, the base fluid and nanoparticles 

densities, Cpf  and  Cpp  are the base fluid and nanoparticles specific heat, respectively. 

 

The effective thermal conductivity of the nanofluid,  knf,  is given by the Maxwell model proposed in 1873 

[20-21] assuming spherical particles, such as: 
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kf  and  kp  are the base fluid and particles thermal conductivity, respectively. 

 

Regarding the effective viscosity of the nanofluid (nf), Einstein was the first to propose in 1906 an 

expression to calculate this property for nanofluids having spherical solid particles, but his formulation has 

some limitations. Thus, many researchers suggest most developed formulations, such as Brinkman, who 

developed in 1952 a modified Einstein’s equation and gave the following expression for the use of particle 

concentration up to 4% [20-21]: 

 

  5.2

f
nf

1 


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f is the base fluid viscosity. 

 

As noted above, the base fluid follows the Carreau-Yasuda rheological model, for which the effective 

viscosity , i.e. f, is defined as follows [22]: 

(1) 

(4) 

(3) 

(2) 
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0 and  represent the zero-shear-rate viscosity and the infinite-shear-rate viscosity, respectively,   is the 

relaxation time or the time parameter, n  denotes the Carreau power-law index (n < 1),  a  is the Yasuda 

exponent and  represents the shear rate. When assuming   << 0, the apparent viscosity of equation (5) 

becomes: 
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The dimensionless form of the Carreau-Yasuda effective viscosity as proposed by Bird et al. [23] is given 

by the following equation: 
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Where  We  represents the Weissenberg number such as:  
0VDWe  ,  and 

*  the dimensionless shear 

rate such as:
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Therefore from Eq. (4) and (7), the dimensionless form of the Carreau-Yasuda nanofluid’s effective 

viscosity is: 
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B. Governing equations 

The dimensionless governing equations (continuity, momentum and energy) are expressed as: 
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The applied boundary conditions include a uniform axial velocity at the inlet (U = 1, V = 0) and no-slip 

condition imposed along the pipe wall (U = V = 0). 

C. Pressure drop 

The pressure drop along fluid flow must be carefully evaluated, especially when the fluid exhibits viscous 

or non-Newtonian characteristics. In this study, it is estimated through the calculation of the Fanning friction 

factor (f Re)x. It consists of the product between the fluid’s apparent viscosity at the wall and the wall velocity 

gradient (wall shear rate), as follows: 
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D. Heat transfer rate 

The rate of heat exchange within a configuration is estimated by calculating the Nusselt number. This is a 

dimensionless number used in heat transfer operations. It represents the ratio between convective and 

conductive heat transfer across an interface, often between a fluid and a solid. When conduction is the 

dominant mode of heat transfer, the Nusselt number is typically on the order of one. However, in the presence 

of convection, heat is mainly transferred through fluid motion, which causes the Nusselt number to increase 

significantly and tend toward infinity. Thus: 
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In order to estimate heat transfer rate between the pipe wall and the fluid, the following expression for the 

Nusselt number is used: 
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E. Numerical modelling 

The elliptic set of partial differential equations (9)-(12) and the associated boundary conditions are 

numerically resolved via the finite volume method formulated by Patankar [24], which guarantees full 

conservation of mass and momentum within the computational domain. Thus, the governing equations are 

reformulated as algebraic expressions in terms of the unknown velocities and pressure at specific grid 

locations. 

An in-house computational code employing the line-by-line solver technique is used to resolve these 

equations. A non-uniform grid is used, with mesh refinement applied at the inlet and near the pipe wall. The 

optimal meshing implemented consists of  250x40  nodes in the X and R directions, respectively. 

Convergence is achieved when the residuals fall below 10
-5

  for velocities and 10
-6

  for pressure. Finally, 10
4
  

iterations were necessary to reach the solution. 

To validate the accuracy of the developed computational code, a limiting case corresponding to Newtonian 

fluid (n = 1 and/or We = 0) was considered. Thus, the obtained velocity profile and Nusselt number evolution 

were compared with the results of Min et al. [25]. As shown in Figure 1, the comparison reveals good 

agreement, with a relative deviation not exceeding 2%. 
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Fig. 1  Velocity profile (a) and Nusselt number axial evolution (b). Pe = Re*Pr = 50, We = 0. 

III. RESULTS AND DISCUSSION 

The objective of this study is to analyze the flow within a pipe, of a shear-thinning nanofluid whose base 

fluid follows the Carreau-Yasuda rheological constitutive equation. The flow is analyzed under the influence 

of volume fraction of nanoparticles as well as rheological properties. Thus, the numerical simulations were 

undertaken for nanoparticles volume fraction 0 ≤  ≤ 0.05 and a Weissenberg number 0 ≤ We ≤ 2.20 

regarding the rheological properties of polyethylene melt in Table 1. It t should be noted that the Weissenberg 

number is a dimensionless number permitting the comparison of viscous and elastic forces of a fluid; it 

indicates the degree of anisotropy or the orientation generated by the deformation. 

All the simulations were obtained for a moderate Peclet number value of 1000 since polyethylene melt has 

a high Prandtl number and axial diffusion is neglected when the Peclet number exceeds 100 [26]. The 

literature reveals that the Peclet number values for polymer melt range between  10
3
  and  10

6
. 

A. Hydrodynamic behaviour 

In order to analyse the effect of the nanoparticle volume fraction  on pressure drop within the pipe, we 

present in Figures 2 and 3, the Fanning friction factor (f Re)x axial evolution for different values of    and  

We, respectively. 
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Fig. 2  Fanning friction factor evolution for different values of the 
nanoparticles volume fraction. Pe = 1000, We = 0.68. 

Fig. 3  Fanning friction factor evolution for different values of the 

Weissenberg number. Pe = 1000,  = 0.04. 

 

We can see that the curves follow the same pattern: a decrease in (f Re)x from the entrance until reaching 

asymptotic and different values, depending on the nanoparticles volume fraction and the Weissenberg number. 

This is attributed to the decrease in the wall velocity gradient along the pipe until it reaches a constant value, 
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corresponding to a fully developed hydrodynamic regime where the velocity profile becomes independent of 

the axis of the flow, as seen in Figure 3. 
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Fig. 4  Velocity profile. Pe = 1000, We = 0.68,  = 0.02. 

 

In the fully developed region (Figure 2), (f Re)x reaches asymptotic values depending on the nanoparticle 

volume fraction. The impact of incorporating nanoparticles into the base fluid is visible since increasing their 

volume fraction intensifies (f Re)x throughout the pipe. This influence results from the directly proportional 

variation in the effective viscosity of the fluid as a function of the nanoparticle volume fraction, according to 

Eq. (8), and not from the effect of the latter on the velocity gradient at the wall, where the effect is almost non-

existent, as seen in Figure 5. 
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Fig. 5  Velocity profile via the nanoparticle volume fraction in the fully developed region. Pe = 1000, We = 0.68, X = 1000. 

 

Therefore, the presence of nanoparticles has a negative influence since it tends to increase (f Re)x and, 

consequently, the pressure drop within the pipe. This effect is all the more significant as  is high. This is well 

represented in Figure 6, which shows the ratio of (f Re)x between the Carreau-Yasuda nanofluid (  0) and 

the base Carreau-Yasuda fluid ( = 0). Indeed, the pressure drop increases, in comparison to the base fluid, by 

about 2.5% for  = 0.01 and reaches 14% for  = 0.05. 
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Fig. 6  Fanning friction factor ratio variation via the nanoparticle volume fraction. Pe = 1000, We = 0.68. 

 

Concerning the effect of the Weissenberg number (Figure 3), we observe that the increase in the latter 

results in a reduction in (f Re)x and a corresponding increase in the fully developed hydrodynamic length. 

However, Figure 7, which illustrates the velocity profile downstream (X = 1000) according to the 

Weissenberg number variations, shows that the latter enhanced the wall velocity gradient. 
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Fig. 7  Velocity profile for different values of the Weissenberg number in the fully developed region. Pe = 1000,  = 0.04, X = 1000. 

 

Thus, it is expected from Eq. (13) that this will have a positive impact on (f Re)x, which is not the case. 

Indeed, although the wall velocity gradient increases, (f Re)x decreases. This can only be due to the fact that it 

is the dependence of effective viscosity on the Weissenberg number (Eq. (8)) that determines the friction 

factor’s response, according to Eq. (13). 

This behavior resembles that found by Khan et al. [27] in their investigation regarding the flow of a 

Carreau-Yasuda fluid by considering Soret and Dufour effects. 

B. Thermal behaviour 

Unlike their effect on hydrodynamic behavior, the impact of the nanoparticle volume fraction and the 

Weissenberg number is almost negligible on heat transfer, as shown in Figures 8 and 9, which illustrate the 

Nusselt number variation along the pipe as a function of    and  We, respectively. 
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Fig. 8  Nusselt number variation according to the nanoparticle volume 

fraction. Pe = 1000, We = 0.68. 
Fig. 9  Nusselt number variation for different values of the 

Weissenberg number. Pe = 1000,  = 0.04. 

 

Similar to (f⋅Re)x evolution, the curves in both figures exhibit the same trend: a decrease in the Nusselt 

number is observed close to the pipe entrance, attributed to a strong wall temperature gradient, followed by an 

asymptotic approach to a limiting value. This limiting value depends on the nanoparticle presence and the 

Weissenberg number, indicating the achievement of the thermal fully developed flow. 

As shown in Figure 8, the effect of nanoparticle volume fraction on the Nusselt number, though limited, is 

noticeable in the inlet region. Actually, in this region, rising nanoparticle concentration enhances heat transfer, 

reflected by a higher Nusselt number, and reduces the length of the thermally fully developed region. Indeed, 

literature confirms that nanoparticles significantly improve heat transfer rates because of their high thermal 

conductivity, which increases the effective thermal conductivity of the nanofluid in comparison to the base 

fluid. 

It can be seen from Figure 10, which present the ratio of Nux between the Carreau-Yasuda nanofluid (  0) 

and the base Carreau-Yasuda fluid ( = 0), an enhancement of approximately 3.05% and 15.8% in heat 

transfer is observed due to the addition of nanoparticle volume fraction of 0.01 and 0.05, respectively. 
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Fig. 10  Nusselt number ratio according to the nanoparticle volume fraction. Pe = 1000, We = 0.68. 

 

In contrast, the impact of the Weissenberg number on Nusselt number variation, as shown in Figure 9, is 

minimal. This can likely be attributed to the relatively low values of this dimensionless number used in the 

study. In fact, we tried to respect the data of Table 1 regarding the rheological properties of the fluid. 
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IV. CONCLUSIONS 

This numerical investigation focused on the flow and heat transfer behavior of Ag/Carreau-Yasuda 

nanofluid within a pipe under the effect of nanoparticle volume fraction and Weissenberg number variations. 

The results reveal that the presence and increased volume fraction of nanoparticles contribute to a rise in the 

Fanning friction factor. Despite the fact that nanoparticles improve heat transfer because of the rise in 

effective thermal conductivity (as seen in the bibliographical review), their presence intensifies viscous 

friction within the fluid and thus amplifies the pressure drop, which acts negatively on the flow. 

The rise of the Weissenberg number, for its part, results in a decrease in both the centerline velocity and the 

Fanning friction factor given that the effective viscosity of the nanofluid is directly proportional to the 

Weissenberg number variation. However, its influence is almost insignificant on heat transfer behavior, 

through the Nusselt number because of its low values considered in this study. On the other hand, as expected, 

the incorporation of nanoparticles improves thermal exchange between the wall and the non-Newtonian 

nanofluid. 
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NOMENCLATURE 

a Yasuda parameter 

Cp specific heat 

D pipe diameter (m) 

h convective coefficient (W/m² °C) 

k Thermal conductivity (W/m °C) 

L pipe length (m) 

n Carreau flow index 

Pe Peclet number, = Re Pr 

Pr Prandtl number 

P* dimensionless pressure, 2

0

* Vp   

p* pressure (Pa) 

r radial coordinate (m) 

R dimensionless radial coordinate, = r/D 

Re Reynolds number 

T temperature (°C) 

T0 inlet temperature (°C) 

Tm mean temperature (°C) 

Tw wall temperature (°C) 

U dimensionless axial velocity, = Vx/ V0 

V dimensionless radial velocity, = Vr/ V0 

Vx axial velocity (m/s) 

Vr radial velocity (m/s) 
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V0 inlet velocity (m/s) 

x axial coordinate (m) 

X dimensionless axial coordinate, = x/D 

 

Greek: 

 shear rate (s
-1

) 

*  dimensionless shear rate, 0VD   

 viscosity (kg/m s) 

 fluid’s density (kg/m
3
) 

 dimensionless temperature, 
w0

w

TT

TT




  

m dimensionless mean temperature, 
w0

wm

TT

TT




  

 

Indices : 

f fluid 

nf nanofluid 

p solid particles 

 
 

 


