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Abstract— Integro-differential equation governs several important real life and numerous scientific and 
engineering domains. A brief survey of the properties and different treatments of the one-dimensional 
integro-differentia problems is presented, and a numerical method is stated for solving some of this problem 
via many numerical methods. In this paper, the problem is considered as a linear Volterra integro-differential 
equation and solutions are obtained using the Nyström method decomposition with difference finites 
method. Once more, the integro-differential equation has been transformed into a numerically-solvable 
linear algebraic system and the Nyström numerical method simplifies the integral part in the equation.  In 
order to demonstrate the method's accuracy and efficacy, certain numerical problems are resolved. 
 
Keywords—  Integro-differential equation, Volterra models, Difference finites method, Quadrature method, 
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I. INTRODUCTION 

 

Mathematical equations known as: Integro-Differential Equations (IDEs) combine integrals and 

derivatives. They appear in a variety of scientific and engineering domains, such as physics, biology, 

economics, and finance, where systems display memory- or history-dependent behavior. Integro-

Deferential Equations (IDEs) incorporate the influence of previous values of the unknown function 

through the integration term, in contrast to Ordinary Differential Equations (ODEs), which solely 

involve derivatives. Problems involving diffusion, wave propagation, population dynamics, control 

theory, and other topics frequently include integral-differential equations. They offer a more accurate 

explanation of events that show memory effects or spatial interactions. Since the majority of IDEs 

cannot be resolved analytically, research has concentrated on creating numerical techniques to achieve 

approximations of solutions [1] .Many methods for determining the numerical solution of integro-

differential equations, include the Adomain decompositions method by [2, 3], Collocation method by 

[4, 5, 6, 7], Hybrid linear multistep method [8, 9], [10] provided a computationally effective approach 

to solving Volterra integro-differential equations  by using Legendre as a basis function for the 

solution of the integro-differential equations. In this paper, we research the computational solutions of 

a certain type of integro-differentials problems with continuous kernel. 

 



Vol.3 Iss.2 pp. 81-101 International Journal of Renewable Energy and Sustainability (RES) 

 

© Copyright 2024  
ISSN: 2961-6603 

 

Volterra was the first person to describe the nonlinear Volterra integro-differential equation. It is used 

in a lot of different physical applications such as glass-forming process, heat transfer, diffusion 

process in general, neutron diffusion and biological species coexisting together with increasing and 

decreasing rates of generating. Literature in the fields of physics, biology, and engineering 

applications can provide additional information about the origins of these equations, for more details, 

see, [11] 

 

This work considers linear and nonlinear Volterra integro-differential equations of the type 

φ(஑)(t) = f(t) + න k(t, x)൫φ(x)൯
୫

dx,    0 ≤ x, t ≤ 1, α = 1, m ≥ 1
୲

଴

    (1) 

 

subject to initial condition 

φ(୧)(0) = q୧, i = 0,1, … , N. 

 

where  k(t, x) is the Fredholm integral kernel function, f(t) is the known function, and φ(t) is an 

unknown function to be determined. 

 

II. SOME VOLTERRA INTEGRO-DIFFERENTIAL MODELS 

 

I. Integro-differential model population growth: 

 In this section we will study the Volterra model for population growth of a species within a closed 

system. The nonlinear Volterra integro-differential equation can be used to describe the Volterra 

population model of the form 

𝜑̇(𝑇) = 𝑎𝜑 − 𝑏𝜑ଶ − 𝑐𝜑 න    (𝑥)𝑑𝑥,    𝜑(0) = 𝜑଴                                         (ଶ)

்

଴

 

 

Where 𝜑(𝑇) denotes the population at time T , a, b, and c are constants and positive parameters, a 

> 0 is the birth rate coefficient, b > 0 is the crowding coefficient, c > 0 is the toxicity coefficient, 

and 𝜑଴ is the initial population. The coefficient c indicates the essential behavior of the population 

evolution before its level falls to zero in the long run. When b = 0 and c = 0, Equation (2) becomes 

the Malthus differential equation 

𝜑̇(𝑇) = 𝑎𝜑,    𝜑(0) = 𝜑଴ 

That is assumed in the Malthus equation, the population growth is proportional to the current 

population. Several computational and analytical methods have been applied to find closed form 

solution and numerical approximations to the population model of the Volterra (2). 
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Fig. 1 [12]  A: Exponential population evolution under constant values: a=0.5, b=0, c=0, 𝛗𝟎ୀ𝟏𝟎. 

             B: Logistic population evolution under constant values: a=0.5, b=0.001, c=0, 𝛗𝟎ୀ𝟏𝟎. 
 

For further studies on the Volterra’s population model, we refer to Wazwaz [11], Bordehor et 

al.[12], and see [12,14,15]. 

 
II. The Thomas-Fermi Equation 

Thomas (1927) and Fermi (1928) independently developed the Thomas-Fermi equation to 

investigate the electron distribution and potentials of an atom. This equation has an essential 

importance in the field of mathematical physics.  It was introduced first to study the multi-

electron atoms. It was used in the description of the charge density in atoms of high atomic 

number. The Thomas-Fermi equation was also used to address the molecular theory, solid 

state theory, and hydrodynamic codes [11]. One example of a nonlinear Volterra integro-

differential equation of the second class is the dimensionless Thomas-Fermi equation, which 

may be expressed as 

𝜑̇(𝑇) = 𝐵 + න (𝑥)
ିଵ
ଶ 𝜑

ଷ
ଶ(𝑥)𝑑𝑥,    

்

଴

 

For an isolated atom, the boundary conditions are given by 

𝜑(0) = 1,   lim
்→ஶ

𝜑(𝑇) = 0. 

Notice that the potential u_(0) = B is important that will be the focus of this study. 

 

For further studies on the Thomas-Fermi Equation, we refer to Wazwaz [11]. 

 

In the next, we will present and apply effective method to determine an approximation 

solution of the Volterra integro-differential equation.  This method is the quadrature method 

decomposition with difference finites method.  
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III. Basic definitions 

 

The hereditary influences were examined by Volterra during the examination of a population growth 

model. The study led to a certain topic where differential and integral operators were used together in 

the same equation. This new type of equations was termed as Volterra integro-differential equations 

given in the form 

φ(୬)(t) = f(t) + න k൫t, x, φ(x)൯dx,    
୲

଴

     

At least one of the derivatives φ′, φ", … , φ(୬) must be present outside the integral sign in any Volterra 

integro-differential equation. The Volterra integro-differential equations may be observed when we 

convert an initial value problem to an integral equation by using Leibnitz rule. 

The Volterra integro-differential equation appeared after its establishment by Volterra. It then 

appeared in many physical applications such as glass forming process, nanohydro-dynamics, heat 

transfer, diffusion process in general, neutron diffusion and biological species coexisting together with 

increasing and decreasing rates of generating, and wind ripple in the desert. More details about the 

sources where these equations arise can be found in physics, biology and engineering applications 

books, for example, see [11]. 

 

To determine a solution for the integro-differential equation, the initial conditions should be given, and 

this may be clearly seen as a result of involving φ(t)  and its derivatives. The initial conditions are 

needed to determine the exact solution. 

 

IV. Finite difference approximations 

 

A finite difference method proceeds by replacing the derivatives in the differential equations by finite 

difference approximations. This gives a large algebraic system of equations to be solved in place of the 

differential equation, something that is easily solved on a computer. 

 

For the sake of simplicity, we shall consider the one-dimensional case only. The main concept behind 

any finite difference scheme is related to the definition of the derivative of a smooth function 𝜑 at a 

point 𝑡 ∈ ℝ: 

𝜑ᇱ(𝑡) = lim
௛→଴

ö(𝑡 + ℎ) − 𝜑(𝑡)

ℎ
, 

and to the fact that when h tends to 0 (without vanishing), the quotient on the right-hand side provides 

a ”good” approximation of the derivative. This means that h should be small enough to get a good 

estimate. Actually, the approximation is good when the error commited in this approximation (i.e. 
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when replacing the derivative by the differential quotient) tends towards zero when h tends to zero. If 

the function 𝜑 is sufficiently smooth in the neighborhood of t, it is possible to quantify this error using 

a Taylor expansion. 

 

Definition (Taylor series): 

Suppose the function φ is Cଶcontinuous in the neighborhood of t. For any h > 0 we have: 

φ(t + h) = φ(t) + h öᇱ(t) +
hଶ

2
φᇱᇱ(t + ε), 

where ε is a number between 0 and h (i.e. x+ε is point of ]x, x+h[). For the treatment of problems, it is 

convenient to retain only the first two terms of the previous expression: 

φ(t + h) = φ(t) + hφᇱ(t) + O(hଶ), 

where the term O(hଶ) indicates that the error of the approximation is proportional to hଶ. 

This estimate is referred to as the forward difference approximant of  φᇱ.  

 

Likewise, we can define the first order backward difference approximation of φᇱat point t as: 

φ(t − h) = φ(t) − hφᇱ(t) + O(hଶ). 

 

Obviously, other approximations can be considered. In order to improve the accuracy of the 

approximation, we define a consistant approximation, called the central difference approximation, by 

taking the points t − h and t + h into account. Suppose that the function φ  is three times differentiable 

in the vicinity of t: 

φ(t − h) − φ(t − h)

2h
= φᇱ(t) + O(hଶ) 

For more information on the finite difference method, see for example [16]. 

  

V. Numerical integration 

 

The most popular approaches to numerical integration are detailed below. The first dimension of 

integrals over bounded intervals will be our main objective. 

1) Quadrature Formula: 

Let f be a real function over the interval [a, b]. Computation directly the definite integral 

 

I(f) = ∫ f(t)dt
ୠ

ୟ
, 

might be complex and sometimes impossible. Any explicit formula that is suitable for 

providing an approximation of I(f) is said to be a quadrature formula or numerical integration 

formula. 
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An example can be obtained by replacing f with an approximation  f୬, depending on the 

integer n ≥ 0, then computing I(f୬)instead of I(f). Letting 

I୬(f) = I(f୬), 

we have 

I୬(f) = න f୬(x)dx,   n ≥ 0.
ୠ

ୟ

 

If f ∈ C଴([a, b]), the quadrature errors E୬(f) = I(f) − I୬(f) satisfies 

|E୬(f)| ≤ න |f(x) − f୬(x)|dx
ୠ

ୟ

≤ (b − a)‖f − f୬‖∝. 

We shall describe the quadrature or Nyström method for the approximate solutions of linear 

and nonlinear integro-differential equations of the second kind with continuous kernels. The 

goal of the quadrature methods is to approximate the definite integral of f(t) over the interval 

G=[a,b] by evaluating f(t) at a finite number of sample points. In this work, we will consider 

closed Newton-Cotes methods only (Simpson's rule). 

Suppose that 𝑎 = 𝑡ଵ
(௡)

< 𝑡ଶ
(௡)

< ⋯ < 𝑡௡
(௡)

= 𝑏 . A formula of the form 

𝑄௡(𝑓) = ෍ 𝑤௜
(௡)

𝑓 ቀ𝑡௜
(௡)

ቁ ,

௡

௜ୀଵ

 

with a property that 

න f(t)dt
ୠ

ୟ

= 𝑄௡(𝑓) + 𝐸(𝑓), 

is called a numerical integration or quadrature formula. The term E(f) is called the truncation 

error for integration. The values 𝑡௜
(௡) are called the quadrature nodes and 𝑤௜

(௡)are called the 

weights. A sequence 𝑄௡(𝑓)of quadrature formulas is called convergent if   

𝑄௡(𝑓) → 𝑄(𝑓),    𝑛 → ∞, ∀𝑓 ∈ 𝐶(𝐺), 

 i.e., if the sequence of linear functionals   nQ   converges pointwise to the integral Q . 

 

The significance of the next two results is to understand that the error terms for the composite 

trapezoidal rule and composite Simpson rule are of the order  𝑂(ℎଶ)  and 𝑂(ℎସ) , respectively. 

This shows that the error for Simpson's rule converges to zero faster than the error for the 

trapezoidal rule as the step size h  decreases to zero. 

 

Corollary 1. (Trapezoidal rule: Error analysis). Suppose that G is subdivided into n  

subintervals  [𝑥௜ , 𝑥௜ାଵ]  of width  ℎ =
௕ି௔

௡
. The composite trapezoidal rule 

𝑇(𝑓, ℎ) =
ℎ

2
൫𝑓(𝑎) + 𝑓(𝑏)൯ + ℎ ෍ 𝑓(𝑥௜),

௡ିଵ

௜ୀଵ
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is an approximation to the integral 

න f(t)dt
ୠ

ୟ

= 𝑇(𝑓, ℎ) + 𝐸்(𝑓, ℎ), 

Furthermore, if f ∈ Cଶ([a, b]), there exists a value c with a<c<b so that the error term   

𝐸்(𝑓, ℎ),has the form 

𝐸்(𝑓, ℎ) =
(𝑎 − 𝑏)𝑓(ଶ)(𝑐)

12
ℎଶ = 𝑂(ℎଶ). 

 

Corollary  2. (Simpson's rule: Error analysis) [10]. Suppose that G is subdivided into 2n 

subintervals  [𝑥௜, 𝑥௜ାଵ] of width ℎ =
௕ି௔

௡
. The composite Simpson rule 

𝑆(𝑓, ℎ) =
ℎ

3
൫𝑓(𝑎) + 𝑓(𝑏)൯ +

2ℎ

3
෍ 𝑓(𝑥ଶ௜) +

4ℎ

3
෍ 𝑓(𝑥௜),

௡

௜ୀଵ

௡ିଵ

௜ୀଵ

 

is an approximation to the integral 

න f(t)dt
ୠ

ୟ

= 𝑆(𝑓, ℎ) + 𝐸௦(𝑓, ℎ), 

Furthermore, if f ∈ Cସ([a, b]) there exists a value c with a<c<b so that the error term 𝐸௦(𝑓, ℎ) 

has the form  

𝐸ௌ(𝑓, ℎ) =
(𝑎 − 𝑏)𝑓(ସ)(𝑐)

180
ℎସ = 𝑂(ℎସ). 

 

VI. Computational Methods For Volterra integro-differential equation 

 

For Urysohn integro-differential equations with continuous kernels, perhaps the most natural and well-

known approximation technique is the Nyström method. That is, if 𝜑(𝑡) satisfies  

φᇱ(t) = Kଵ(t)φ(t) + F(t) + ∫ K൫t, x, φ(x)൯dx
୲

଴
                                            (3) 

then one can obtain an approximation to 𝜑(𝑡)  by replacing 

න K൫t, x, φ(x)൯dx = ෍ K ൬t, x୨, φ୨
(x)൰ 𝑤௜

(௡)
,

௡

௝ୀଵ

୲

଴

                                                  (4) 

with quadrature points (nodes)  𝑡௜
(௡) contained in G and real quadrature weights  档௜

(௡)
 . Substituting 

the right-hand side of Eq(4) for the integral in Eq(4) generates the functional equation  

𝜑ᇱ
௡

(𝑡) + ∑ K ቀt, x୨, φ
୬൫x୨൯ቁ 𝑤௜

(௡)௡
௝ୀଵ =  𝐹(𝑡)                                             (5) 

Where 𝜑௡(𝑡) is an approximation to 𝜑(𝑡). All the conventional quadrature rules can be written in the 

form of equation (3). The trapezoidal and Simpson rules are special cases of (4). 
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A. For linear Volterra integro-differential equation: 

Volterra integro-differential equation of the second kind of the following form 

φᇱ(t) = Kଵ(t)φ(t) + F(t) + න K(t, x)φ(x)dx
୲

଴

                                     (6) 

Now, we can apply Simpson method (see, for example [17]) for equation  Eq. (6).  

By the numerical integration formulas of modified Simpson method and finite difference formulation 

for the integro-differential equation Eq. (4), we obtain the following iteration formula 

𝜑′൫𝑡ଶ௝൯ =
௛

ଷ
ቀ∑ ቀ𝐾൫𝑡ଶ௝ , 𝑥ଶ௜൯𝜑(𝑡ଶ௜) + 𝐾൫𝑡ଶ௝ , 𝑥ଶ௜ାଵ൯𝜑൫𝑡ଶ _ାଵ൯ + 𝐾൫ 灳ଶ௝ , 𝑥ଶ௜ାଶ൯𝜑(𝑡ଶ௜ାଶ)ቁ

௝ିଵ
௜ୀ଴ ቁ +

𝐾ଵ൫𝑡ଶ௝൯𝜑൫𝑡ଶ௝൯ +  𝐹൫𝑡ଶ௝൯, 

we approximate 𝜑′൫𝑡ଶ௝൯  and  𝜑(𝑡ଶ௜ାଵ)  by 
ఝమೕశమିఝమೕ

ଶ௛
   and  

ఝమ೔శమାఝమ೔

ଶ
     respectively. The last equation 

becomes 

𝜑൫𝑡ଶ௝ାଶ൯ =  𝐹൫𝑡ଶ௝൯

+
2ℎଶ

3
ቌ෍ ቀ𝐾൫𝑡ଶ௝ , 𝑥ଶ௜൯ + 2𝐾൫𝑡ଶ௝ , 𝑥ଶ௜ାଵ൯ቁ 𝜑(𝑡ଶ௜)

௝ିଵ

௜ୀ଴

+ ෍ ቀ2K൫tଶ୨, xଶ୧ାଵ൯ + K൫tଶ୨, xଶ୧ାଶ൯ቁ  ö(tଶ୧ାଶ)

௝ିଵ

௜ୀ଴

ቍ

+ ൫2ℎ𝐾ଵ൫𝑡ଶ௝൯ + 1൯𝜑൫𝑡ଶ௝൯                                                                                              (7) 

 

By recurrence, we can to calculate the approximation solutions  𝜑  of the equation  Eq. (6)  in all 

points  𝑡ଶ௝  for  j=0,1,2,…,n.   

B. For nonlinear Volterra integro-differential equation 

Non linear Volterra integro-differential equation of the second kind of the following form 

φᇱ(t) = Kଵ(t)φ(t) + F(t) + න K൫t, x, φ(x)൯dx
୲

଴

                                     (8) 

Now, we can apply Simpson method (see, for example [17]) for equation  Eq. (8).  

Now, by the numerical integration formulas of modified Simpson method and finite difference 

formulation for the integro-differential equation Eq. (8), we obtain the following iteration formula 

𝜑ᇱ൫𝑡ଶ௝൯ =
௛

ଷ
ቀ∑ ൬𝐾 ቀ𝑡ଶ௝ , 𝑥ଶ௜ , 𝜑(𝑡ଶ௜)ቁ + 𝐾 ቀ𝑡ଶ௝ , 𝑥ଶ 㜷ାଵ, 𝜑(𝑡ଶ௜ାଵ)ቁ + 𝐾 ቀ𝑡ଶ௝ , 𝑥ଶ௜ାଶ, 𝜑(𝑡ଶ௜ାଶ)ቁ൰

௝ିଵ
௜ୀ଴ ቁ +

𝐾ଵ൫𝑡ଶ௝൯𝜑൫𝑡ଶ௝൯ +  𝐹൫𝑡ଶ௝൯, 
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we approximate 𝜑′൫𝑡ଶ௝൯  and  𝜑(𝑡ଶ௜ାଵ)  by 
ఝమೕశమିఝమೕ

ଶ௛
   and  

ఝమ೔శమାఝమ೔

ଶ
     respectively. The last equation 

becomes 

𝜑൫𝑡ଶ௝ାଶ൯ =
ଶ௛మ

ଷ
ቀ∑ ൬𝐾 ቀ𝑡ଶ௝ , 𝑥ଶ௜ , 𝜑(𝑡ଶ௜)ቁ + 𝐾 ቀ𝑡ଶ௝ , 𝑥ଶ௜ାଵ, 𝜑(𝑡ଶ௜ାଵ)ቁ + 𝐾 ቀ𝑡ଶ௝ , 𝑥ଶ௜ାଶ, 𝜑(𝑡ଶ௜ାଶ)ቁ൰

௝ିଵ
௜ୀ଴ ቁ +

൫2ℎ𝐾ଵ൫𝑡ଶ௝൯ + 1൯𝜑൫𝑡ଶ௝൯ +  2ℎ𝐹൫𝑡ଶ௝൯,                                                                                       (9) 

 By recurrence, we can to calculate the approximation solutions  𝜑  of the equation  Eq. (8)  in all 

points  𝑡ଶ௝  for  j=0,1,2,…,n.   

For great detail and more information about the topic of nonlinear integro-differential equation and 

their numerical solution, see[1-9 ] and [17]. 

 

VII. Numerical examples 

 

The quadrature method decomposition with difference finites method for solving the second kind 

Volterra integro-differential equations will be illustrated by studying the following four examples. The 

selected equations are linear and of order one. 

 

Example 01 [11]: First we consider the linear Volterra integro-differential equations of the second 

kind of the form: 

φᇱ(t) = 1 − 2tsint + ∫ φ(x)dx
୲

଴
                                              (10) 

with the initial condition given as φ(0) = 0, the exact solution is  

 

φ(t) = tcos(t). 

 

We shall demonstrate the numerical resultants obtained by Nyström numerical methods to validate 
their application to integro-differential equation (10), and we take N=20,40, 60. 
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N=20 Exact 
Solution 

Approximation 
Solution 

Absolute 

 Error 

0 0.0000e+00 0.0000e+00 0.0000e+00 

0.1 9.9500e-02 1.0006e-01 5.6250e-04 

0.2 1.9601e-01 1.9838e-01 2.3694e-03 

0.3 2.8660e-01 2.9200e-01 5.4013e-03 

0.4 3.6842e-01 3.7805e-01 9.6245e-03 

0.5 4.3879e-01 4.5378e-01 1.4991e-02 

0.6 4.9520e-01 5.1664e-01 2.1441e-02 

0.7 5.3539e-01 5.6429e-01 2.8903e-02 

0.8 5.5737e-01 5.9466e-01 3.7293e-02 

0.9 5.5945e-01 6.0597e-01 4.6521e-02 

1 5.4030e-01 5.9679e-01 5.6490e-02 

 
TABLE I: Exact solution, Approximation solutions and Absolute errors to integro-differential equation (10),  

for N=20. 
 
 

N=40 Exact 
Solution 

Approximation 
Solution 

Absolute 
Error 

0 0.0000e+00 0.0000e+00 0.0000e+00 

0.1 9.9500e-02 9.9797e-02 2.9670e-04 

0.2 
1.9601e-01 

1.9723e-01 1.2148e-03 

0.3 
2.8660e-01 

2.8934e-01 2.7439e-03 

0.4 
3.6842e-01 

3.7329e-01 4.8663e-03 

0.5 
4.3879e-01 

4.4635e-01 7.5575e-03 

0.6 
4.9520e-01 

5.0599e-01 1.0787e-02 

0.7 
5.3539e-01 

5.4991e-01 1.4517e-02 

0.8 
5.5737e-01 

5.7607e-01 1.8707e-02 

0.9 
5.5945e-01 

5.8276e-01 2.3310e-02 

1 
5.4030e-01 

5.6858e-01 2.8277e-02 

 
TABLE III: Exact solution, Approximation solutions and Absolute errors to integro-differential equation (10),  

for N=40. 
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N=60 Exact 
Solution 

Approximation 
Solution 

Absolute 
Error 

0 
0.0000e+00 

0.0000e+00 0.0000e+00 

0.1 
9.9500e-02 

9.9702e-02 2.0124e-04 

0.2 1.9601e-01 1.9683e-01 8.1657e-04 

0.3 2.8660e-01 2.8844e-01 1.8389e-03 

0.4 3.6842e-01 3.7168e-01 3.2563e-03 

0.5 4.3879e-01 4.4384e-01 5.0522e-03 

0.6 4.9520e-01 5.0241e-01 7.2060e-03 

0.7 5.3539e-01 5.4508e-01 9.6929e-03 

0.8 5.5737e-01 5.6985e-01 1.2485e-02 

0.9 5.5945e-01 5.7500e-01 1.5551e-02 

1 5.4030e-01 5.5916e-01 1.8859e-02 

 
TABLE IIIII: Exact solution, Approximation solutions and Absolute errors to integro-differential equation (10),  

for N=60. 

 

 
Fig. 2  Absolute errors to  integro-differential equation (10); by using the quadrature method decomposition with difference finites 

method. 
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Example 02 [11] : We consider the linear Volterra integro-differential equations of the second kind of 

the form: 

φᇱ(t) = 1 + ∫ φ(x)dx
୲

଴
                                                     (11) 

with the initial condition given as φ(0) = 1, the exact solution is  

 

φ(t) = e୲. 

 

We shall demonstrate the numerical resultants obtained by Nyström numerical methods to validate 
their application to integro-differential equation (11), and we take N=20, 40, 60. 

 

N=20 Exact 
Solution 

Approximation 
Solution 

Absolute 

 Error 

0 1.0000 1.0000 0.0000e+00 

0.1 1.1052 1.1078 2.6610e-03 

0.2 1.2214 1.2270 5.6372e-03 

0.3 1.3499 1.3588 8.9889e-03 

0.4 1.4918 1.5046 1.2783e-02 

0.5 1.6487 1.6658 1.7096e-02 

0.6 1.8221 1.8441 2.2012e-02 

0.7 2.0138 2.0414 2.7625e-02 

0.8 2.2255 2.2596 3.4043e-02 

0.9 2.4596 2.5010 4.1385e-02 

1 2.7183 2.7681 4.9789e-02 

 
TABLE IV: Exact solution, Approximation solutions and Absolute errors to integro-differential equation (11),  

for N=20. 
 
 

N=40 Exact 
Solution 

Approximation 
Solution 

Absolute 
Error 

0 
1.0000 

1.0000 0.0000e+00 

0.1 
1.1052 

1.1065 1.3235e-03 

0.2 
1.2214 

1.2242 2.8015e-03 

0.3 
1.3499 

1.3543 4.9119e-03 

0.4 
1.4918 

1.4982 6.8515e-03 
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0.5 
1.6487 

1.6572 9.0554e-03 

0.6 
1.8221 

1.8330 1.1566e-02 

0.7 
2.0138 

2.0274 1.3680e-02 

0.8 
2.2255 

2.2424 1.6847e-02 

0.9 
2.4596 

2.4801 2.0468e-02 

1 
2.7183 

2.7429 2.4610e-02 

 
TABLE VI: Exact solutions, Approximation solutions and Absolute errors to integro-differential equation (11),  

for N=40. 
 
. 

N=60 Exact 
Solution 

Approximation 
Solution 

Absolute 
Error 

0 1.0000 1.0000 0.0000e+00 

0.1 1.1052 1.1061 8.8081e-04 

0.2 1.2214 1.2233 1.8640e-03 

0.3 1.3499 1.3528 2.9692e-03 

0.4 1.4918 1.4960 4.2184e-03 

0.5 1.6487 1.6544 5.6362e-03 

0.6 1.8221 1.8294 7.2501e-03 

0.7 2.0138 2.0228 9.0909e-03 

0.8 2.2255 2.2367 1.1193e-02 

0.9 2.4596 2.4732 1.3597e-02 

1 2.7183 2.7346 1.6345e-02 

 
TABLE VIII: Exact solutions, Approximation solutions and Absolute errors to integro-differential equation (11),  
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.Fig. II : Absolute errors to  integro-differential equation (11); by using the quadrature method decomposition with difference finites 
method for N=60. 

 

Example 03 [11]: We consider the linear Volterra integro-differential equations of the second kind of 

the form: 

φᇱ(t) = 1 + t + ∫  (t − x)φ(x)dx
୲

଴
                                            (12) 

 

with the initial condition given as φ(0) = 1, the exact solution is  

 

φ(t) = e୲. 

 

We shall demonstrate the numerical resultants obtained by Nyström numerical methods to validate 
their application to integro-differential equation (12), and we take N=10, 20, 60. 

 

N=10 Exact 
Solution 

Approximation 
Solution 

Absolute Error 

0 1.0000 1.0000 0.0000e+00 

0.1 1.1052 1.0995 5.7041e-03 

0.2 1.2214 1.2094 1.2006e-02 

0.3 1.3499 1.3309 1.8973e-02 

0.4 1.4918 1.4651 2.6685e-02 

0.5 1.6487 1.6135 3.5238e-02 

0.6 1.8221 1.7774 4.4742e-02 

0.7 2.0138 1.9584 5.5324e-02 

0.8 2.2255 2.1584 6.7131e-02 

0.9 2.4596 2.3793 8.0332e-02 

1 2.7183 2.6232 9.5118e-02 

 
TABLE VII: Exacts solution, Approximation solutions and Absolute errors to integro-differential equation (12); 

for N=10 by using the Nyström numerical method. 
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N=20 Exact 
Solution 

Approximation 
Solution 

Absolute 
Error 

0 
1.0000 

1.0000 0.0000e+00 

0.1 
1.1052 

1.1024 2.7398e-03 

0.2 
1.2214 

1.2156 5.7681e-03 

0.3 
1.3499 

1.3407 9.1186e-03 

0.4 
1.4918 

1.4790 1.2831e-02 

0.5 
1.6487 

1.6318 1.6952e-02 

0.6 
1.8221 

1.8006 2.1536e-02 

0.7 
2.0138 

1.9871 2.6647e-02 

0.8 
2.2255 

2.1932 3.2355e-02 

0.9 
2.4596 

2.4209 3.8745e-02 

1 
2.7183 

2.6724 4.5910e-02 

 
TABLE VIIII: Exact  solutions, Approximation solutions and Absolute errors to integro-differential equation (12);  

for N=20 by using the Nyström numerical method. 

 

N=60 Exact 
Solution 

Approximation 
Solution 

Absolute 
Error 

0 1.0000 1.0000 0.0000e+00 

0.1 1.1052 1.1043 8.8865e-04 

0.2 1.2214 1.2195 1.8712e-03 

0.3 1.3499 1.3469 2.9587e-03 

0.4 1.4918 1.4877 4.1643e-03 

0.5 1.6487 1.6432 5.5034e-03 

0.6 1.8221 1.8151 6.9941e-03 

0.7 2.0138 2.0051 8.6570e-03 

0.8 2.2255 2.2150 1.0516e-02 

0.9 2.4596 2.4470 1.2598e-02 

1 2.7183 2.7033 1.4935e-02 

 
TABLE IXII: Exact solutions, Approximation solutions and Absolute errors to integro-differential equation (12);  

for N=60 by using the Nyström numerical method 
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Fig. III:  Absolute errors to  integro-differential equation (12); by using the quadrature method decomposition with difference finites 

method. 

 

Example 04: We consider the linear Volterra integro-differential equations of the second kind of the 

form: 

φᇱ(t) =
ି୲మ

ଶ
φ(t) + ∫ (t − x)φ(x)dx

୲

଴
                                                  (13) 

with the initial condition given as φ(0) = 1, the exact solution is  

φ(t) = 1. 

We shall demonstrate the numerical resultants obtained by Nyström numerical methods to validate 
their application to integro-differential equation (13), and we take N=10, 20, 40. 

N=10 Exact 
Solution 

Approximation 
Solution 

Absolute Error 

0 1.0000 1.0000e+00 0.0000e+00 

0.1 1.0000 9.9950e-01 4.9983e-04 

0.2 1.0000 9.9900e-01 9.9925e-04 

0.3 1.0000 9.9850e-01 1.4973e-03 

0.4 1.0000 9.9801e-01 1.9918e-03 

0.5 1.0000 9.9752e-01 2.4801e-03 

0.6 1.0000 9.9704e-01 2.9581e-03 

0.7 1.0000 9.9658e-01 3.4211e-03 

0.8 1.0000 9.9614e-01 3.8639e-03 

0.9 1.0000 9.9572e-01 4.2806e-03 
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1 1.0000 9.9533e-01 4.6651e-03 

TABLE X: Exact solutions, Approximation solutions and Absolute errors to integro-differential equation (13); 
for N=10 by using the Nyström numerical methods. 

N=20 Exact 
Solution 

Approximation 
Solution 

Absolute 
Error 

0 
1.0000 

1.0000e+00 0.0000e+00 

0.1 
1.0000 

9.9997e-01 3.1248e-05 

0.2 
1.0000 

9.9994e-01 6.2466e-05 

0.3 
1.0000 

9.9991e-01 9.3568e-05 

0.4 
1.0000 

9.9988e-01 1.2441e-04 

0.5 
1.0000 

9.9985e-01 1.5478e-04 

0.6 
1.0000 

9.9982e-01 1.8442e-04 

0.7 
1.0000 

9.9979e-01 2.1303e-04 

0.8 
1.0000 

9.9976e-01 2.4026e-04 

0.9 
1.0000 

9.9973e-01 2.6575e-04 

1 
1.0000 

9.9971e-01 2.8914e-04 

TABLE XII: Exact solutions, Approximation solutions and Absolute errors to integro-differential equation (13);  
for N=20 by using the Nyström numerical methods. 

 

N=60 Exact 
Solution 

Approximation 
Solution 

Absolute 
Error 

0 1.0000 1.0000e+00 0.0000e+00 

0.1 1.0000 1.0000e+00 4.9996e-06 

0.2 1.0000 9.9999e-01 9.4951e-06 

0.3 1.0000 9.9999e-01 1.3976e-05 

0.4 1.0000 9.9998e-01 1.8918e-05 

0.5 1.0000 9.9998e-01 2.3789e-05 

0.6 1.0000 9.9997e-01 2.8550e-05 

0.7 1.0000 9.9997e-01 3.3151e-05 

0.8 1.0000 9.9996e-01 3.7541e-05 

0.9 1.0000 9.9996e-01 4.1660e-05 

1 1.0000 9.9995e-01 4.6166e-05 

 
TABLE XIIII: Exact solutions, Approximation solutions and Absolute errors to integro-differential equation (13);  
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for N=60 by using the Nyström numerical methods. 

 

 
Fig. IV: Absolute errors to  integro-differential equation (13); by using the quadrature method decomposition with difference finites 

method. 

 

 

 

VIII. Conclusion 

 

The present study involves the examination the quadrature method decomposition with difference 

finites method to solve the initial value problems for a kind of one-order linear Volterra integro-

differential equation. Illustrative examples are included to demonstrate the validity and applicability of 

the method and the tables of results presented reveal that the absolute error decreases when the degree 

of approximation increases.  
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