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Abstract— In this work, the modeling and control of the Wind 
Energy Conversion Systems (WECS) based on doubly fed induction 
generator (DFIG) are presented. Firstly, we developed the models 
of the different elements of the conversion chain. After, we 
consider the vector control strategy of the active and reactive 
powers in order to ensure an optimum operation. Finally, the 
dynamic model of a DFIG and wind turbine grid connected system 
is determined in the dq-synchronous reference frame. The 
numerical simulation results obtained with Matlab/Simulink 
software present the behaviors of the sub-synchronous and super- 
synchronous operation modes. 
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I. INTRODUCTION 

Today, there is a growing demand for energy. However, to 
satisfy this demand, the world is heading toward the 
renewable resources for their several advantages, such as the 
reduction in dependence on fossil fuel resources and the 
reduction in carbon emissions to the atmosphere. Furthermore, 
by using renewable energy we avoid the safety problems 
caused by atomic power [1], [2]. Among these resources, wind 
energy has recently become the world’s fastest growing 
source of renewable energy [3]. It has a more important 
energizing potential and it is the first source of extendable 
energy, takes priority over all other renewable sources of 
energy worldwide after the hydraulics [4], [5]. Wind energy is 
a clean renewable energy source. It has been estimated that 
roughly 10 million MW of energy is continuously available in 
the earth’s wind [6]. Therefore, their facilities increased 
considerably in the world because while producing electricity, 
they do not propagate any gas greenhouse effect [7]. 
Development of wind electricity conversion system not only 
saves the energy resources, but also is one of most efficient 
means of improving the makeup of the energy resources and 
decreasing the environment pollution [8]. 

Currently, wind variable speed system based on a doubly 
fed induction generator (DFIG) is most commonly used in 

wind farms fat has its many advantages: a very good energy 
efficiency, robustness, as well as ease exploitation and 
control. In addition, it enables operation to a variable speed ± 
30% around the synchronous speed, thus guaranteeing a 
reduced dimensioning of the static converters [9], [10]. Due to 
these advantages, the DFIG has generated a lot of curiosity on 
the part of researchers who have tried to develop strategies to 
best exploit its strong points [11]. 

In this work, we present the modeling of the mechanical 
and electrical parts of the conversion chain in order to control 
the active and reactive powers, independently; in hypo and 
hyper synchronous modes. For this, three control strategy are 
considered: MPP control, control of Rotor Side Converter 
(RSC) and the control of Grid Side Converter (GSC). 

The paper is organized as follows. Section 2, presents the 
description and the modeling of different elements of the 
conversion chain. The various control algorithms for a optimal 
turbine operation and control of active and reactive power will 
be presented in section 3. The results of simulations obtained 
for the two modes sub-synchronous and super-synchronous 
modes will be presented and discussed in Section 4. Finally, 
the conclusions are established. 

II. DESCRIPTION OF THE SYSTEM STUDY 

The wind system studied is illustrated in Fig.1. It is 
constituted by the turbine, the gearbox and the DFIG. The 
wind captures the kinetic energy of wind and converts it in a 
torque that makes turn the blades of the rotor. After that, the 
DFIG transforms the mechanical power in electric power. The 
DFIG is connected directly to the grid via its stator but also 
via its rotor through the intermediary of the static converters 
to allow an exchange of energy between the network and the 
DFIG at the speed of synchronism. The two converters, 
network side and DFIG side are controlled by Pulse Width 
Modulation (PWM) [12]. Through the bidirectional static 
converters, the DFIG can work in sub-synchronous and super- 
synchronous modes. Since the converters are designed for a 
power of 25-30% of the nominal power of the DFIG [13]. 
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Therefore the losses in the converter are little important, their
cost is reduced compared to a variable speed wind turbine
stator fueled by power converters. Furthermore, the ability to
control the reactive power impose the power
connection point of the DFIG to the grid, are the two major
reasons for which this machine is found to
power [14]. The different under models of
mechanical and electric are described below.

 
 
 

  

 
 

 

 

Fig. 1 Schematic diagram of DFIG wind
 
 

II. 1 Wind Turbine Modeling 

According that the mechanical system is characterized by
the sum of all mechanical characteristics, the Fig.2 show a
mechanical model. 
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Fig. 2 Mechanical model simplified of wind

 
The power available from the wind traversing

defined by [15]. 
 

𝑃𝑣 = 1 . 𝜌. 𝑆. 𝑉3 

The mechanical power of the wind turbine

𝑃 = 𝐶 . 
𝜌.𝑆.𝑉3 

 
 

𝑡𝑢𝑟 𝑝 2 

The evolution of the power coefficient (𝐶
blade pitch angle (β) and the tip-speed ratio
defined as follows: 

 

𝜆 = 
𝑅.Ω𝑡𝑢𝑟 

𝑉 

From summaries achieved on a wind 
expression of the power coefficient has been approached, for
this type of turbine, by the following equation

 
CNV 𝐶 
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))) (sin ( 𝜋(𝜆+0.1) )) − 
(15.5−(0.3(𝛽−2))) 

) (4) 
expression is given by: 

.   
1 
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power control is to adjust the torque of the DFIG to extract
maximum power. The red dotted line indicates the optimal
power points for respectively v= 8 m/s and 
CP coefficient is kept at its maximum value.
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II. 2 Modeling the DFIG with Stator Field Orientation

For the DFIG modeling, the following assumptions
considered [19], [20]: 
- the notching effect is negligible; 
- the magnetic saturation is neglected; 
- the resistance of the windings is constant; 
- the flux distribution is sinusoidal. 

 
The Park model of DFIG is given by the equations

 
𝑉𝑠𝑑 = 𝑅𝑠𝑖𝑠𝑑 + 

𝑑𝜑𝑠𝑑 − 𝜔𝑠𝜑𝑠𝑞 

{ 
𝑉   = 𝑅 𝑖 

𝑑𝑡 

+ 𝑑𝜑𝑠𝑞 + 𝜔 𝜑 
𝑠𝑞 𝑠 𝑠𝑞 𝑑𝑡 𝑠    𝑠𝑑 

𝑉𝑟𝑑 = 𝑅𝑟𝑖𝑟𝑑 + 
𝑑𝜑𝑟𝑑 − 𝜔𝑟𝜑𝑟𝑞 

{ 
𝑉    = 𝑅 𝑖 + 𝑑𝜑𝑟𝑞 + 𝜔 𝜑 

𝑟𝑞 𝑟 𝑟𝑞 𝑑𝑡 𝑟    𝑟𝑑 

As the d and q axis are magnetically decoupled,
and rotor flux are given as: 

 
𝜑𝑠𝑑 = 𝐿𝑠𝑖𝑠𝑑 + 𝐿𝑚𝑖𝑟𝑑 
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𝜑𝑟𝑑 = 𝐿𝑟𝑖𝑟𝑑 + 𝐿𝑚𝑖𝑠𝑑 
{𝜑𝑟𝑞 = 𝐿𝑟 𝑖𝑟𝑞 + 𝐿𝑚𝑖𝑠𝑞 

 
The active and reactive powers are defined
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Within Fig. 5, we can write: 
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equations below: 

Defining the slip by: 𝑔 = 𝜔𝑠−𝜔𝑒

𝜔𝑠 

The Park frame is oriented so
quadrature with the q axis (𝜑𝑞𝑠

(12) can be written as follows: 

(10) 𝜑𝑠𝑑  = 𝜑𝑠 = 𝐿𝑠𝑖𝑠𝑑 + 𝐿𝑚𝑖𝑟{ 
𝜑𝑠𝑞 = 0 = 𝐿𝑠𝑖𝑠𝑞 + 𝐿𝑚𝑖𝑟𝑞

 
(11) Considering that the resistance

neglected [21], [22], the voltage
stator windings can be simplified in

decoupled, the stator 
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Hence, the relationship between the stator and rotor 
currents can be written as follows: 

 
𝑖𝑠𝑑 = 

𝜑𝑠 − 
𝐿𝑚 𝑖𝑟𝑑 

III. WIND TURBINE CONTROL SYSTEM 

In this work, the three controls studied are: 
- extraction of the maximum wind power control 

“MPP” (Maximum Power Point) from the wind for a 
{ 

𝐿𝑠 𝐿𝑠 

𝑖𝑠𝑞 = − 
𝐿𝑚 𝑖𝑟𝑞 

𝑠 

 

From the equations (13) and (20), we can write: 

(20) wide range of wind speeds, 
- control of CNV2, 
- control of CNV1. 

These controls will be considered separately. 
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III. 1 Maximum Power Point Control 
𝑟𝑑 { 𝑟 𝐿𝑠

 𝑟𝑑 𝜔𝑠𝐿𝑠 (21) Fig. 6 illustrates the principle of MPP control without speed 
𝜑 = (𝐿 − 𝑀

2

) 𝑖 
 

 

control of the rotation speed: 
𝑟𝑞 𝑟 𝐿𝑠

 𝑟𝑞 

 

Replacing the equations (19, 21) in (10, 11) the stator and 
rotor voltages are then simplified to: 
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𝑅𝑠 𝜑𝑠𝑑 − 
𝑅𝑠 𝐿𝑚𝑖𝑟𝑑 
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𝑑𝑡 
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𝑉   = 𝑅 𝑖 + 𝜎. 𝐿 𝑑𝑖𝑟𝑞 

+ 𝑒
 + 𝑒 (23) 

 

Where: 
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𝜎 = 1 − (  𝑀  )
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√𝐿𝑠𝐿𝑟 

 
(24) 

 
 

Fig. 6 Block diagram without speed control 
 

The control system of DFIG wind turbine assures the 
variable speed operation that maximizes the output power for 

(𝐿𝑟 − 𝑀
2

): coupling term between the two axes compensable 
𝐿𝑠 

a wide range of wind speeds. The power extracted from the 
wind is maximized when the rotor speed is such that the 

in the control loop [14] and 𝑒𝜑 : electromotive force. 
Taking into consideration the chosen reference frame, the 

electrical active and reactive powers delivered by the stator 
and the rotor are given by: 

power coefficient is optimal 𝐶𝑝𝑜𝑝𝑡. Therefore, we must set the 
tip speed ratio on its optimal value 𝜆𝑜𝑝𝑡. The electromagnetic 
torque reference determined by MPP control is thus expressed 
by the following equation [20]: 

 − = 𝑃𝑠 ل
𝑉𝑠.𝑀 

. 𝑖𝑟  
𝐶 .𝜌.𝜋.𝑅5 

𝐿𝑠 𝑇∗   =  𝑝𝑜𝑝𝑡 . Ω2 (27) 
I𝑄 2 

=    𝑠 − 
𝑀.𝑉𝑠 . 𝑖

 𝑒𝑚 2.𝐺3.𝜆3 𝑚 

𝑠 𝐿𝑠𝜔𝑠 𝐿𝑠 
𝑟𝑑 (25) 

❪ 𝑃𝑟 = 𝑔. 𝑉𝑠.𝑀 . 𝑖𝑟𝑞 
𝑠 

𝑄𝑟 = 𝑔. 
𝑉𝑠.𝑀 

. 𝑖𝑟𝑑 
𝑠 

Fig. 7 illustrate 𝐶𝑝 the power coefficient characteristic in 
function of 𝜆 with 𝛽=2°. This figure indicates that there is one 
specific point at which the turbine is most efficient. 
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The electromagnetic torque is as follows: 
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III.2 Modeling and Control of the Grid Side

The mathematic model of gird-side converter can be
described in matrix form [23]: 

 
𝑑𝑖𝑓𝑑 

 
− 𝑅𝑓 𝖥 

 
− 𝑆𝑑 1 

 
𝖥 0

𝖥 𝑑𝑡 1 
I𝑑𝑖𝑓𝑞 I 

𝐿𝑓 
I  

−𝑅𝑓 
𝐿𝑓 

−𝑆𝑞
I 𝑖𝑓𝑑 𝑖 

𝐿𝑓 
I 1

 
I 𝑑𝑡  I = I−𝜔𝑠 𝐿 

𝐿    I . [ 𝑓𝑞 ] + I 0 
𝐿𝑓

I𝑑𝑉    I I 𝑓 𝑓 I 𝑉𝑑𝑐 I 
      𝑑𝑐 

[ 𝑑𝑡 ] 
3𝑆𝑑 

[ 2𝐶 

3𝑆𝑞 
0

 
2𝐶 
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Where 𝑆𝑞, 𝑆𝑑 are the switches functions 
capacitance. From the above equation, we can

𝐿 
𝑑𝑖𝑓𝑑 

= −𝑅 𝑖 + 𝑒 − 𝑆 𝑉 

{  
𝑓 𝑑𝑡 𝑓 𝑓𝑑 𝑓𝑑 𝑑   𝑑𝑐 

𝐿 
𝑑𝑖𝑓𝑞 

= −𝑅 𝑖 + 𝑒 − 𝑆 𝑉 
𝑓  𝑑𝑡 𝑓 𝑓𝑞 𝑓𝑞 𝑞   𝑑𝑐 

Because, the output voltage of the grid-side
be set: 

 
𝑉𝑓𝑑 = 𝑆𝑑 𝑉𝑑𝑐 

{
𝑉

 = 𝑆 𝑉 
𝑓𝑞 

 
Where: 

𝑞   𝑑𝑐 

{ 
𝑒𝑓𝑑 = 𝜔𝑠𝐿𝑓𝑖𝑓𝑞 + 𝑉𝑠𝑑 

𝑒𝑓𝑞 = −𝜔𝑠𝐿𝑓𝑖𝑓𝑞  + 𝑉𝑠𝑞 

The equations indicate that the current 
−𝜔𝑠𝐿𝑓𝑖𝑓𝑞 can realize decoupling, meantime the gird disturb
voltage can carry out forward feed compensation.
independent control of 𝑖𝑓𝑞, 𝑖𝑓𝑑 can be acquired.
power and the reactive power of gird-side
written as follows [23], [24]: 

 
𝑃 = 3 𝑈 𝑖 

𝑚 𝑓𝑑 
{ 
𝑄 = 3 𝑈𝑚𝑖𝑓𝑞 
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 ] 

Where Um is the amplitude of
The objective of the control

“CNV2" is to maintain the tension of the bus “DC” constant
regardless of the amplitude and the flow direction of the DFIG
rotor power and the regulating of the grid side power factor 
controlling the currents flowing
𝑖𝑓𝑞_𝑟𝑒𝑓, 𝑖𝑓𝑑_𝑟𝑒𝑓 are respectively resulting from DC bus control
and reactive power at the connection point of CNV
network. 

 
Where: 

 12 14 
𝑖𝑓𝑑_𝑟𝑒𝑓 = 

𝑄𝑓_𝑟𝑒𝑓 

𝑉𝑠𝑞 

speed ratio 
𝑖𝑓𝑞_𝑟𝑒𝑓 = 

𝑃𝑓_𝑟𝑒𝑓 

𝑉𝑠𝑞 

Side Converter CNV2 

side converter can be 

 
The block diagram of current

frame is illustrated in Fig. 8. 

0 0 1 
𝑖𝑓𝑑_𝑟𝑒𝑓 

1 
 

𝑉𝑠𝑑 𝑉 𝑖 

𝑓 
0 I . [ 𝑠𝑞 ] (28) 𝑓𝑞_𝑟𝑒𝑓 

I 𝑖𝑙 

0 
−1 

𝐶 

Fig.8 Block diagram

 and 𝐶 is the 
can conclude: 

III. 3 Control of the DC Bus 

The control of the DC bus voltage
reference active power 𝑃𝑐_𝑟𝑒𝑓 which

(29) capacitor to the desired value. But
network can be set through the

the bloc diagram of DC bus control.

side converter can  
 

 
𝑉𝑑𝑐_𝑟𝑒𝑓 

 
 

 
𝑖𝑐_𝑟𝑒𝑓 

 
 

 
𝑃× 

(30) + P 
 
 

 
Fig. 9 Bloc diagram

(31) III.4 Control of the Rotor Side Converter

The rotor side converter “CNV
 feedback 𝜔𝑠𝐿𝑓𝑖𝑓𝑞, 

can realize decoupling, meantime the gird disturb 
compensation. So the 

acquired. The active 
side converter are 

and reactive powers produced by the machine. It’s controlled
by acting on the direct and quadrature components of the rotor
voltage. This allows the decoupled
reactive powers. Furthermore,
controlling the rotor currents 
DFIG in d-q reference frame
shows that the rotor currents can be controlled independently.
Fig. 10 shows the bloc diagram

(32) 
𝑖𝑟𝑑_𝑟𝑒𝑓, 𝑖𝑟𝑞_𝑟𝑒𝑓 are given by: 

+ 

𝑖𝑓𝑞_𝑚𝑒𝑠 

+ 
 

𝑖𝑓𝑑_𝑚𝑒𝑠 

I
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of phase voltage. 
control of the grid side converter 

is to maintain the tension of the bus “DC” constant 
regardless of the amplitude and the flow direction of the DFIG 

and the regulating of the grid side power factor by 
flowing in the RL filter. The current 

are respectively resulting from DC bus control 
and reactive power at the connection point of CNV2 with the 

(33) 

 
(34) 

current control in Park reference 

𝑉𝑓𝑑−𝑟𝑒𝑓 

𝑒𝑓𝑑 

𝑉𝑓𝑞−𝑟𝑒𝑓 

𝑒𝑓𝑞 

diagram of current contro(l28) 

voltage allows not only for the 
which is necessary to charge the 

But also, the power factor side 
the power reactive. Fig. 9 shows 

control. 

𝑃𝑐_𝑟𝑒𝑓 

 
𝑃𝑙𝑜𝑎𝑑 

 
𝑃𝑓_𝑟𝑒𝑓 

 

𝑉𝑠𝑞 

 
 

 
𝑖𝑓𝑞_𝑟𝑒𝑓 

 + 

diagram of DC bus control. 

 
𝑉𝑑𝑐_𝑚𝑒𝑠 

Converter CNV1 

“CNV1” permits to control active 
and reactive powers produced by the machine. It’s controlled 
by acting on the direct and quadrature components of the rotor 

decoupled control of active and 
Furthermore, the control is obtained by 

 of the DFIG. The model of 
frame with stator field orientation 

shows that the rotor currents can be controlled independently. 
diagram of rotor currents control with 

- 
+

 PI 

- 
+

 PI 

(34) 
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𝑉𝑑𝑓_𝑟𝑒𝑓 

𝑉𝑞𝑓_𝑟𝑒𝑓 

 
 
PWM 

dq 
 
 
 

abc 

𝑖𝑟𝑑_𝑟𝑒𝑓 + 
− 

PI 

𝑀.𝑉𝑠𝑞 

𝑖𝑟𝑞_𝑟𝑒𝑓 + − 

𝑖𝑟𝑞_𝑚𝑒𝑠    

 

𝑖𝑟𝑑_𝑟𝑒𝑓  = 
𝜑𝑠𝑑 −

   𝐿𝑠     . 𝑄𝑠_𝑟𝑒𝑓 Concerning the second status, we first change 𝑄𝑠 at time t = 

{ 
𝑀 𝑀.𝑉𝑠𝑞 

𝑖𝑟𝑞_𝑟𝑒𝑓 = −   𝐿𝑠     . 𝑃𝑠_𝑟𝑒𝑓 

 
𝑖𝑟𝑑_𝑚𝑒𝑠 

 
 

 

 
 
 

𝑒𝑟𝑑 

 

 
𝑒𝑟𝑞 

 
 
 

𝑒𝜑 

 
 
 
 
 

𝑉𝑟𝑑_𝑟𝑒𝑓 

 

 
𝑉𝑟𝑞_𝑟𝑒𝑓 

(35) 0.5s and then 𝑃𝑠 at time t = 0.7s as shown in the Figures 12b 
and 13b. We remark that the change of one of these size do 
not influence the change of the other, which testifies a 
decoupled control of the active and reactive power, both in 
sub-synchronous mode (Fig.12. b) and super-synchronous 
(Fig.13.b). However, allow for the functioning of the DFIG in 
the different quadrants, during the status 3, we changed 𝑃𝑠−𝑟𝑒𝑓 
and 𝑄𝑠−𝑟𝑒𝑓 in the opposite sense of the status 2. It is found 
that the control remain decoupled. 

Finally, during the status 4, only Qs is changed while 
keeping 𝑃𝑠 constant. Under these operating conditions, we 
remark that the power active and reactive to the rotor (see 
Fig.12.c and Fig.13.c) evolve correctly. However, we notice 

Fig. 10 Bloc diagram of rotor currents control 
 

IV. SIMULATION AND INTERPRETATION 

Based on the last study, we present the block diagram of 
the tested system in following figure. The developed program 
was used to present the simulation illustrated and discussed 

for the validity of the study. The simulation parameters are 
given in table 1 of the appendix A. The studied system has 

been tested in sub-synchronous and super-synchronous modes. 
The Figures 12 and 13 show the simulation results 

corresponding respectively to the two modes. For this, the 
unity power factor in the connection of the CNV2 with the 

grid is obtained by setting 𝑄𝑓−𝑟𝑒𝑓 = 0. Similarly, we vary the 
stator reactive power 𝑄𝑠 by varying its reference value in the 

control of CNV1. And, the speed wind 8m/s and 12m/s 
correspond 1556rd/min and 2336rd/min at the machine speed 

(see Fig.12a and Fig.13a). All the simulations presented 
correspond to the changes of the references of active (𝑃𝑠) and 
reactive (𝑄𝑠) powers as show in table 2 of the appendix A. 
Note that for the first time interval (0-0.5s), we held to show 
the functioning of the wind system with a unity power factor 
(𝑃𝑠−𝑟𝑒𝑓 = -0.5 MW and 𝑄𝑠−𝑟𝑒𝑓 = 0). 

Ω𝑚 

that since the DFIG needs a reactive power necessary to its 
magnetization and as the stator reactive power is null (𝑄𝑠 = 
0), the DFIG absorbs the reactive power by the rotor. 

Fig.12.d and Fig.13.d displays respectively the DC voltage 
( 𝑉𝑑𝑐 ) in sub-synchronous and super-synchronous mode. 
Furthermore, thanks to the compensation in the 
implementation control of CV2, It can be seen that 𝑉𝑑𝑐 voltage 
follows perfectly 𝑉𝑑𝑐−𝑟𝑒𝑓 . In addition, we remark as a light 
variation of 𝑉𝑑𝑐 and that because of the important variation of 
the rotor reactive power. Knowing that the rotor powers is not 
uncoupled contrary to the stator powers. 

Figures 14 and 15, show the evolution of the stator, rotor 
and filter currents in sub-synchronous and super-synchronous 
mode respectively. The currents normally follow the 
evolutions of the powers previously discussed for the case of 
stator currents Fig.14a and Fig.15a, whereas the currents to 
the rotor Fig.14b and Fig.15b evolve identically to the rotor 
active power in sub-synchronous mode and inversely in super- 
synchronous mode. Concerning the currents crossing the filter, 
they remain weak for the case of sub-synchronous mode 
Fig.14c and Fig.15c and that the current filter on the direct 
axis is null for the two modes. 
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APPENDIX A 
TABLE I 

FONT SIMULATED DFIG WIND TURBINE PARAMETERS 
 

Rated power 1.5MW 
Rotor diameter 35.25m 
Gearbox ratio 90 
Friction coefficient : 𝑓 0.0024 
Moment of inertia ∶ 𝐽 1000 
Stator 
voltage/Frequency 

690V/50Hz 

𝑅𝑠 / 𝑅𝑟 (Ω) 0.012/0.021 
𝐿𝑚/𝐿𝑠/𝐿𝑟 (H) 0.0135/0.0137/0.013675 
𝑅𝑓 (𝐻)/𝐿𝑓 (𝐻)/𝐶 (𝐹) 0.000002/0.005/0.044 
Number of pole pairs:𝑝 2 
𝑉𝑑𝑐_𝑟𝑒𝑓 2000V 
𝑄𝑓_𝑟𝑒𝑓 0 

 
 

TABLE II 
OPERATION STATUES OF THE SIMULATED DFIG 

 

Status Time (sec) Reactive 
power 

(MVar) 

Time (sec) Active 
power 
(MW) 

1 0 < t ≤ 0.5 0 0 < t ≤ 0.7 - 0.5 
2 0.5 < t ≤1 -1 0.7 < t ≤ 1.4 0.5 
3 1 < t ≤ 1.7 0.8 1.4 < t ≤ 2.5 -1 
4 1.7 < t ≤ 2.5 -0.7   

 

 
APPENDIX B 

MPP control {   
𝜆𝑜𝑝𝑡 = 8.

 
𝐶𝑝𝑜𝑝𝑡 = 0.45. 

Controller gains (pu) 
 

For the synthesis of the regulators we opted for the method 
of poles compensation. 

 

TABLE III 
SYNTHESIS OF THE REGULATORS 

 

Rotor side converter DC bus control Grid side 
converter 

𝑡𝑟= 0.01 s; 

𝐾 = 𝜎 ∗ 
𝐿𝑟 

= 0.03757 
𝑡𝑟 

𝐼 = 
𝑅𝑟 

= 2.10 
𝑡𝑟 

ƺ = 0.707 
𝑡𝑟1 = 0.1 𝑠; 

𝐾𝑐 = 2 ∗ ƺ ∗ 𝐶 ∗ 𝜔𝑐 
= 0.16798 
𝐼𝑐 = 𝐶 ∗ 𝜔2 = 3.2076 

𝑐 

𝑡𝑟2 = 2 𝑚𝑠; 

𝐾 = 
𝐿𝑓 

= 25 
𝑓 𝑡𝑟2 

𝐼 = 
𝑅𝑓 

= 0.01 
𝑓 𝑡𝑟2 

APPENDIX C 

TABLE IV 
LIST OF SYMBOLS 

 

𝑃𝑠, 𝑄𝑠 stator active and reactive power 
𝑃𝑟, 𝑄𝑟 rotor active and reactive power 
𝐶𝑒𝑚 DFIG electromagnetic torque (N m) 
𝑑, 𝑞 synchronous reference frame index 
𝑉𝑠𝑑,𝑞 stator d–q frame voltage 
𝑉𝑟𝑑,𝑞 rotor d–q frame voltage 
𝑖𝑠𝑑,𝑞 stator d–q frame current 
𝑖𝑟𝑑,𝑞 rotor d–q frame current 
𝜑sd,q stator d–q frame flux 
𝜑rd,q rotor d–q frame flux 
𝑅𝑠, 𝑅𝑟 stator and rotor Resistances 
𝐿𝑠, 𝐿𝑟 stator and rotor self Inductances 
𝐿m mutual inductance 
𝜔s, 𝜔r synchronous and rotor angular 

frequency 
𝑉dc DC link voltage 
𝐿𝑓, 𝑅𝑓 filter leakage inductance and 

resistance 
𝜌 air density 
𝑉𝑤 wind speed 
R rotor radius 
λ tip-speed ratio 
Ω𝑡 aeroturbine rotor speed 
Ω𝑚 generator speed 
G gearbox ratio 
𝐽 turbine total inertia 
𝐽𝑡𝑢𝑟 , 𝐽𝑔𝑒𝑛 rotor and DFIG inertia 
𝑓 turbine total external damping 
𝑖𝑙𝑜𝑎𝑑 onduleur current 
𝑉𝑑𝑐_𝑟𝑒𝑓 voltage reference 
σ Coefficient of dispersion. 
CNV1 First converter 
CNV2 Second converter 

 
 

V. CONCLUSIONS 

This paper presents a powers control strategy for doubly 
fed induction generator which provides decoupled control of 
active and reactive power. However, the fact of the control of 
these powers separately permits to adjust the power factor of 
the installation and in consequence obtain better performance. 

Therefore, the detailed modeling of the mechanical part of 
the wind turbine taking into account the characteristics of the 
blade profile used and the wedging angle, and the mechanical 
assembly includes the gearbox is presented. According this 
model, a control algorithm simulation is given in 
Matlab/Simulink software to investigate the validity of the 
study. We not that, the simulation results show that the stator 
active and reactive control powers give a good performance. 
Hence, the power control strategy is well adapted to this kind 
of system. 
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