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Abstract— The full potential-linearized augmented plane wave (FP
LAPW) method within density functional theory (DFT) was applied
to study the structural, electronic, optic and
properties of CaS1-xSex temary alloys. 
approximation was used with generalized gradient correction (GGA)
as well as the Engel-Vosko GGA formalism to calculate band gap.
The effect of composition on lattice constants,
band gap was investigated. Deviation of the lattice constants from
Vegard’s lawand the bulk modulus from 
dependence (LCD) were observed for the 
microscopie origins of the gap bowing were explained by using the
approach of Zunger and co-workers. In order
thermodynamic stability of the alloys we first calculated
enthalpy of mixing Hm as a function of concentration (x). Then by
using a regular model solution the x-dependent interaction parameter,
Ω, was obtained from the result of DHm versus x. Finally, by using
this Ω value, the phase diagram of the alloys was calculated. It was
shown that all of these alloys are stable at high 
other hand, an accurate calculation of linear
(refraction index and both imaginary and real parts of the dielectric
function). 

Keywords— FP-LAPW, Band gap, structural
properties, Phase diagramme. 

 

I. INTRODUCTION 

Semiconductor alloys, which are solid solutions of two or more
semiconducting elements, have important technological applications,
especially in the manufacture of electronic 
devices. One of the easiest ways to change artificially the electronic
and optical   properties of semiconductors is by forming their alloys;
it is then interesting to combine two different
different optical band gaps and different rigiditie
new material with intermediate properties. Hence, the major goal in
materials engineering is the stability to tune
independently in order to obtain the desired properties. The alkaline
earth chalcogenides (AX: A = Be, Ca, Mg, Sr, Ba; X = O, S, Se, Te)
form a very important closed shell ionic system
NaCl-type structure at room conditions except for the MgTe and the
beryllium chalcogenides. These compounds 
important materials having many applications ranging from catalysis
to microelectronics. They have also application
luminescent devices [1-3]. 
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linearized augmented plane wave (FP- 
LAPW) method within density functional theory (DFT) was applied 

and thermodynamic 
 The local density 

approximation was used with generalized gradient correction (GGA) 
Vosko GGA formalism to calculate band gap. 

constants, bulk modulus and 
band gap was investigated. Deviation of the lattice constants from 

 linear concentration 
 three alloys. The 

microscopie origins of the gap bowing were explained by using the 
order to investigate the 

calculated the excess 
as a function of concentration (x). Then by 

dependent interaction parameter, 
was obtained from the result of DHm versus x. Finally, by using 

this Ω value, the phase diagram of the alloys was calculated. It was 
shown that all of these alloys are stable at high temperature. On the 

linear optical functions 
(refraction index and both imaginary and real parts of the dielectric 

structural and optical 

Semiconductor alloys, which are solid solutions of two or more 
semiconducting elements, have important technological applications, 

 and electro-optical 
devices. One of the easiest ways to change artificially the electronic 
and optical   properties of semiconductors is by forming their alloys; 

different compounds with 
different optical band gaps and different rigidities in order to obtain a 
new material with intermediate properties. Hence, the major goal in 

tune the band gap 
independently in order to obtain the desired properties. The alkaline 

, Mg, Sr, Ba; X = O, S, Se, Te) 
system crystallizing in 

type structure at room conditions except for the MgTe and the 
 are technologically 

applications ranging from catalysis 
application in the area of 

In fact, one of the easiest ways to change artificially the electronic
and optical properties of semiconductors is by forming their alloys; It
is then interesting to combine 
different optical band gaps and different rigidities in order to obtain a
new material with intermediate properties. Therefo
progress has made in the last few
effects of disorder in random alloys. Zunger and co
introduced an approach that greatly reduces the size of the supercell
required to obtain a realistic description of a random alloy by using
so-called ‘special quasirandom structures
In this paper, we model CaS1-xSe
compositions with ordered structures
periodically repeated supercells (SQSs). In order to carry out our
calculations, we have applied the full potential
plane wave (FP-LAPW) method. On one hand we focused our efforts
on the physical origins and variation of the optical ba
the alloy fraction; on the other
fundamental issue of the phase stability and exploring the optical
properties of these alloys. 

 

II. METHOD OF 

In order to calculate the structural
xSex alloys, we have employed the FP-
Sham equations. We have performed our calculations by the WIEN2K
[6] within the framework of density functional theory (DFT) [7], that
been shown to yield reliable result
properties of various solids. The exchange
described within the generalized gradient approximation (GGA) based on
Perdew et al. [8] to calculate the total energy, while for the electronic
properties, in addition to the GGA correction
[9] scheme was also applied. In the FP
charge density and potential are expanded
unit cell. Inside the non-overlapping 
atom, spherical harmonic expansions are used, while in the remaining space
of the unit cell a plane wave basis set 
were assumed to be 2.2, 2.3, 2.4, and 2.5 au for S, Ca, Se and Te atoms,
respectively. A mesh of 47 special k-points for binary compounds and 125
special k-points for alloys were taken in the irreducible wedge of the
Brillouin zone for the total energy calculation. The maximum l value for the
wave function expansions inside spheres was confined to l
wave cut-off of Kmax= 8.0/RMT is chosen for the expansion of the wave
functions in the interstitial region while
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In fact, one of the easiest ways to change artificially the electronic 
and optical properties of semiconductors is by forming their alloys; It 

 two different compounds with 
different optical band gaps and different rigidities in order to obtain a 
new material with intermediate properties. Therefore, a great deal of 

few decades in understanding the 
effects of disorder in random alloys. Zunger and co-workers [4] have 
introduced an approach that greatly reduces the size of the supercell 

cription of a random alloy by using 
structures (SQSs). 
Sex ternary alloys at some selected 

structures described in terms of 
periodically repeated supercells (SQSs). In order to carry out our 
calculations, we have applied the full potential-linearized augmented 

LAPW) method. On one hand we focused our efforts 
on the physical origins and variation of the optical band gap within 

other hand we address the more 
fundamental issue of the phase stability and exploring the optical 

 CALCULATIONS 

structural and electronic properties of CaS1-

-LAPW method [5] to solve the kohn-
Sham equations. We have performed our calculations by the WIEN2K code 
[6] within the framework of density functional theory (DFT) [7], that has 
been shown to yield reliable results for the electronic and structural 
properties of various solids. The exchange-correlation contribution is 
described within the generalized gradient approximation (GGA) based on 
Perdew et al. [8] to calculate the total energy, while for the electronic 

correction the Engel-Vosko (EVGGA) 
[9] scheme was also applied. In the FP-LAPW approach the wave function, 

are expanded differently in the two regions of the 
overlapping spheres of radius RMT around each 

atom, spherical harmonic expansions are used, while in the remaining space 
is chosen. The muffin-tin radius RMT 

were assumed to be 2.2, 2.3, 2.4, and 2.5 au for S, Ca, Se and Te atoms, 
points for binary compounds and 125 

points for alloys were taken in the irreducible wedge of the 
culation. The maximum l value for the 

wave function expansions inside spheres was confined to lmax=10. The plane 
is chosen for the expansion of the wave 

while the charge density was Fourier 
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expanded up to Gmax =14 (Ryd)1/2. Both the plane 
number of k-points are varied to ensure total energy convergence.

 
III. RESULTS AND DISCUSSION

A. STRUCTURAL PROPERTIES

In this section, we have analyze the structural properties of
Se, Te) compounds in the rocksalt structure using the
alloys have been modeled at some selected compositions (x = 0.25, 0.5,
0.75) following the SQS approach. For the considered structures, we
perform the structural optimization by minimizing the total energy with
respect to the cell parameters and also the atomics positions.
The total energy calculated as a function of unit cell volume where fitted to
the murnaghan’s equation of state [10]. The equilibrium lattice constants
and bulk modulus both for binary compounds and their
table 1. Considering the general trend that GGA usually overestimates the
lattice parameters [11], our GGA results of binary compounds are in
reasonable agreement with the experimental and other

 
Tableau 1. Calculated lattice parameter (a) and bulk modulus 
CaSe and CaTe compounds and their alloys at equilibrium

 

x  Lattice constant a 
(A) 

 
Bulk modulus

this Experimett other 
this work

work [17] calculation[ 
   18]  

CaS1-xSex 1 5.964 5.916  5.829 47.958  

0.75 5.906 49.910 

0.5 5.847 52.499 

0.25 5.787 55.176 

0 5.722 5.689 5.598 57.106  
 

 
Usually, in the treatment of alloys, it is assumed that the atoms are
located at the ideal lattice sites and the lattice constant varies linearly
with according to the so-called Vegard’s law
violation in this linear law has been reported in semiconductor alloys
both experimentally [13, 14] and theoretically
example the results obtained for the composition dependence of the
calculated equilibrium lattice parameter for
respectively are shown in Fig 1. 
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Fig.1. Composition dependence of the calculated lattice
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squares) of CaS1-xSex alloy compared with Vegard’s
line). 

A small deviation from Vegard's law (a linear variation
constant of alloys versus composition x) is clearly
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DISCUSSION 

PROPERTIES 

properties of CaX (X = S, 
the GGA scheme. The 

ward bowing parameter equal to 
obtained by fitting the calculated values with a polynomial function.
Fig. 2 shows the bulk modulus as a function of x for
respectively. A Similar behavior was observed for the composition
dependence of the bulk modulus for all three alloys. Deviations of the
bulk modulus from the linear concentration dependence (LCD) with
downward bowing equal to 0.05029 GPa
observed. The large value of the bulk
alloy       5 8 

alloys have been modeled at some selected compositions (x = 0.25, 0.5, 
0.75) following the SQS approach. For the considered structures, we 
perform the structural optimization by minimizing the total energy with 

positions. 
l volume where fitted to 

the murnaghan’s equation of state [10]. The equilibrium lattice constants 
their alloys are given in 
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other calculated values. 
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Usually, in the treatment of alloys, it is assumed that the atoms are 
located at the ideal lattice sites and the lattice constant varies linearly 

law [12]. However, 
semiconductor alloys 

theoretically [15, 16]. As an 
example the results obtained for the composition dependence of the 

for CaS1-xSex alloys, 

 

Fig.2. Composition dependence of the
squares) of CaS1-xSex alloy compared with

B. OPTICAL BOWING

The self-consistent scalar relativistic
compounds and their alloys was calculated within the GGA and EVGGA
schemes. The results for each compound are given in table 2. It is well
known that the GGA usually underestimates the energy gap [19
mainly due to the fact that the functional within this approximation have
simple forms that are not sufficiently flexible to reproduce accurately both
exchange correlation energy and its charge derivative. Engel and Vosko by
considering this shortcoming constructed a new functional form of the GGA
which is able to better reproduce exchange
agreement in exchange energy. This approach (EVGGA) yields a better
band splitting and some other properties which mainly depend on the
accuracy of exchange-correlation potential. However, in this method, the
quantities that depend on an accurate 
such as equilibrium volumes and bulk modulus are in poor agreement with
experiment. Therefore we always apply EVGGA to the electronic properties
and GGA for the structural properties

Tableau 2. Band gap energy of CaS1-x

(all values are given in eV) 
 

x    

Our work 
 1 ,0 

lattice Constants (solid 

 GGA EVGG

CaS1-xSex 1 2.105 2.815
Vegard’s prediction (dashed 0.75 2.171 2.906

0.50 2.235 2.977

variation of the lattice 0.25 2.321 3.089
is clearly visible with an up- 0 2.405 3.176
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ward bowing parameter equal to -0.01714 Å for CaS1-xSex alloys 
obtained by fitting the calculated values with a polynomial function. 
Fig. 2 shows the bulk modulus as a function of x for CaS1-xSex alloys 
respectively. A Similar behavior was observed for the composition 
dependence of the bulk modulus for all three alloys. Deviations of the 
bulk modulus from the linear concentration dependence (LCD) with 
downward bowing equal to 0.05029 GPa for CaS1-xSex, alloys, was 

bulk modulus bowing for CaS1-xTex 
 compared        to 

 0 , 8 1 , 0 

n x 

for CaSe1-xTex 
CaS1-xSex, is also 
because of the 

significant 
mismatch of the 
bulk modulus of 
CaS and CaTe 
compounds. 

the calculated bulk modulus (solid 
with LCD prediction (dashed line). 

BOWING AND ITS ORIGINS 

relativistic indirect band gap of CaX 
compounds and their alloys was calculated within the GGA and EVGGA 
schemes. The results for each compound are given in table 2. It is well 
known that the GGA usually underestimates the energy gap [19-22]. This is 
mainly due to the fact that the functional within this approximation have 

ly flexible to reproduce accurately both 
exchange correlation energy and its charge derivative. Engel and Vosko by 
considering this shortcoming constructed a new functional form of the GGA 

exchange potential at the expense of less 
agreement in exchange energy. This approach (EVGGA) yields a better 
band splitting and some other properties which mainly depend on the 

correlation potential. However, in this method, the 
quantities that depend on an accurate description of exchange energy Ex 
such as equilibrium volumes and bulk modulus are in poor agreement with 
experiment. Therefore we always apply EVGGA to the electronic properties 

properties [20 - 22]. 

xSex alloys at different concentrations 
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We calculated gap bowing, using the GGA and EVGGA schemes, by fitting
the non-linear variation of the calculated band gaps versus concentration
with quadratic functions. The results are shown in Fig 3 and obey the
following variations 

 
CaS1-xSex ⇒  

 
EGGA  2.406 0.366x  0.066x

EEVGGA  3.178 0.399x  0.038

The results of the calculated gap bowing are given in
seen that the calculated quadratic parameters (gap bowing)
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better understand C o m p o s it io n x the physical
gap bowing in calcium chalcogenides alloys, we follow the procedure of
Bernard and Zunger [23] and decompose the bowing parameter 
physically distinct contributions. 

 
 
 
 
 
 
 

Fig.3. Composition dependence of the calculated band
(solid squares) and EVGGA (solid circles) for CaS1-xSe

Table 3. Decomposition of the optical bowing into volume deformation
(VD), charge exchange (CE), and structural relaxation (SR) contributions
compared with the optical bowing obtained by 
variation of the calculated band gap versus concentrati
functions at molar fractions 0.25, 0.50 and 0.75 (all values are

 

parameter calculation  
Quadratic 
fits 

 
 

1-x   x    VD 

 
By considering the fact that the bowing dependence to the composition is
marginal, the authors limited their calculations to x=0.5 (50%
The overall gap bowing coefficient at x = 0.5 measures the change in band
gap according to the reaction: 
AB(aAB) + AC(aAC) → AB0.5C0.5(aeq) 
where aAB and aAc are the equilibrium lattice constants of the binary
compounds AB and AC, respectively, and aeq is the alloy equilibrium lattice
constant. We now decompose reaction (1) into three

 

AB (aAB) + AC (aAC) AB(a) +AC(a) 
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b 0.080 0.074 0.065 
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We calculated gap bowing, using the GGA and EVGGA schemes, by fitting 
linear variation of the calculated band gaps versus concentration 

with quadratic functions. The results are shown in Fig 3 and obey the 

 
AB0.5 C0.5 AB0.5C0.5(aeq) 

the total gap bowing parameter bVD

the band structure of the binary compounds

x2 

0.038x2 

 
(1) 

pressure, which here arises from the change of their individual equilibrium
lattice constants to the alloy value a=a(x) (from Vegard's rule). The second
contribution, the charge-exchange (CE)

given in table 3. It is clearly 
bowing) within GGA and 

EVGGA are very 

transfer effect which is due to the different (averaged) bonding behavior at
the lattice constant a. The final step measures changes due to the structural
relaxation (SR) in passing from the unrelaxed

to the results 
obtained by the 
Zunger approach. 
The optical 
bowing of CaS1- alloy was found to 

Consequently, the total gap bowing parameter is defined as where
energy gap which have been calculated for the indicated atomic structures
and lattice constants. All term in Eqs. (5) 
self-consistent band structure calculations within density functional theory
and the results are given in table 3. 
b = bVD + bCE + bSR, 

small. In order to bvD = 2[AB(aAB) - AB(a) + Ac(aAc) - Ac

physical origins of the bCE = 2[AB(a) + AC(a) - 2ABC(a)] 
gap bowing in calcium chalcogenides alloys, we follow the procedure of 
Bernard and Zunger [23] and decompose the bowing parameter (b) into 

band gap using GGA 
Sex alloy 

Decomposition of the optical bowing into volume deformation 
(VD), charge exchange (CE), and structural relaxation (SR) contributions 

 fitting the non-linear 
variation of the calculated band gap versus concentration with quadratic 

values are given in eV) 
 

bSR = 4[ABC(a) - ABC(aeq)] 

The total gap bowing is found to be small for the CaS
the two other corresponding alloy.
deformation term to the bowing parameter b
significant for CaS1-xSex. This term is correlated to the mismatch of the
lattice constants of the corresponding binary compounds. The charge
transfer contribution bCE has been found smaller than b
negligible for CaS1-xSex. this contribution
electronegativity difference between S and Se atoms. Indeed, the significant
role of bCE is correlated with iconicity factor difference between c
binary compounds CaS (fi=0.43) and 

C. THERMODYNAMIC

Focusing on the thermodynamic 
calculated the phase diagram based on

The Gibbs free energy of mixing, m,

m =   Hm Sm 

Where: 

Hm = Ω x (1-x), 

Sm =   

m and m are the enthalpy and entropy of mixing, respectively; 
interaction parameter, R is the gas constant and T is the absolute
temperature. Only the interaction parameter
The mixing enthalpy of alloys can be

energies as Hm = EABxC1-x xEAB 

By considering the fact that the bowing dependence to the composition is 
marginal, the authors limited their calculations to x=0.5 (50%-50% alloy). 
The overall gap bowing coefficient at x = 0.5 measures the change in band 

 (2) 
are the equilibrium lattice constants of the binary 

is the alloy equilibrium lattice 
three steps: 

 (3) 

 (4) 

EAC are the respective energies of ABx

AB and Ac. We then calculated 

concentration.. The interaction parameter
increasing x. From a linear fit we obtained

CaS1-xSex Ω (Kcal/mol) = -0.324x

The average values of the x-dependent 
from these equations for CaS1-x Sex alloys is 1.418 (Kcalmol
The large enthalpy for CaS1-xTex alloy 
a higher critical temperature. 

We calculated the temperature-composition phase diagram which shows
the stable, metastable and unstable mixing regions of the alloy. At a
temperature lower than the critical temperature
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 (5) 

VD represents the relative response of 
compounds AB and AC to hydrostatic 

pressure, which here arises from the change of their individual equilibrium 
lattice constants to the alloy value a=a(x) (from Vegard's rule). The second 

(CE) contribution bCE, reflects a charge 
transfer effect which is due to the different (averaged) bonding behavior at 
the lattice constant a. The final step measures changes due to the structural 

the unrelaxed to the relaxed alloy by bSR. 
Consequently, the total gap bowing parameter is defined as where  is the 
energy gap which have been calculated for the indicated atomic structures 
and lattice constants. All term in Eqs. (5) - (8) are calculated separately via 

consistent band structure calculations within density functional theory 
 

 (6) 

Ac(a)], (7) 
 (8) 

 (9) 

The total gap bowing is found to be small for the CaS1-xSex alloy, while for 
alloy. The contribution of the volume 

deformation term to the bowing parameter bVD has been found to be 
This term is correlated to the mismatch of the 

lattice constants of the corresponding binary compounds. The charge 
has been found smaller than bVD but it is not 

contribution is due to the large 
electronegativity difference between S and Se atoms. Indeed, the significant 

is correlated with iconicity factor difference between constituent 
 CaSe (fi=0.38). 

THERMODYNAMIC PROPERTIES 

 properties of CaS1-xSex alloys, we 
on the regular-solution model [25-27]. 

m, for alloys is expressed as 

 (10) 

 (11) 

                           (12) 

are the enthalpy and entropy of mixing, respectively; Ω the 
interaction parameter, R is the gas constant and T is the absolute 

interaction parameter Ω depends on the material. 
be obtained from the calculated total 

(1-x) E Ac, where E 
 

ABxC1-x , EAB , and 

xC1-x alloy and the binary compounds 

 m to obtain Ω as a function of 

parameter increases almost linearly with 
obtained 

0.324x + 1.580x (13) 

dependent Ω in the range 0 ≤ x ≤ 1 obtained 
alloys is 1.418 (Kcalmol-1) respectively. 

 suggest a large value of Ω and hence 

composition phase diagram which shows 
the stable, metastable and unstable mixing regions of the alloy. At a 

temperature Tc, the two bimodal points 

 0 , 4 0 , 6 0 , 8 1 , 0 
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are determined as those points at which the common
the m curves. The two spinodal points are determined

which the second derivative m is zero. Fig. 5 displays
phase diagrams including the spinodal and binodal
interest. We observed a critical temperature Tc 

Sex alloys, respectively. The spinodal curve in the phase diagram marks
the equilibrium solubility limit, i.e., the miscibility 
and compositions above this curve a homogeneous alloy is predicted. The
wide range between spinodal and binodal curves indicates
may exist as metastable phase. 

 
 
 

 

 

 

 

 

 

 
Fig.4. T-x phase diagram of CaS1-xSex alloy. Dashed line:
solid line: spinodal curve. 

D. OPTICAL PROPERTIES

In this section we analyze the most important measurable quantity is the
dielectric function of the system which is a complex quantity

( ) = 1() + i2() 
Where 1() and 2() represent the real and the imaginary parts of the
dielectric function. the imaginary parts of 2(), depends on the joint
density of state and the momentum matrix elements. The real part of the
dielectric function, 1(), was obtained from by the Kramers
realations. The properties optic ofthe semiconductor alloys are important
and essential in the design and fabrication of devices. In the design and
analysis these devices, the refractive index and optical
of the material of interest have to be known as a function of composition
and wavelength. In this theoretical work, we calculated the refractive index
and the optical dielectric constant and compared with

 is given by expression (14). 
1/ 2 

 1  
n 

 2     2    
 1 2  

2 2 
 

At low frequency (ω=0), we get the following relation
n(0) =  ½ (0) 

1. The Moss formula [28] based on an atomic model. 
Egn 4 = k 
Where Eg is the energy band gap and ka constant. The
be 108 eV by Ravindra and Srivastava [28] 
2. The expression proposed by Ravindra and all [29]. 

n Eg 

With =4.084 and  = 0.62 eV ¹ 
3. Herve and Vandamme’s empirical relation [30] 

n  

With A = 13.6 eV and B = 3.4 eV 

The variation of the refractive index for the three
function the concentration x has been studied. Our results

International Journal of Renewable Energy and Sustainability (RES)

n

n

the common tangent line touches 
determined as those points at 

displays the calculated 
binodal curves of alloys of 

 of 357.8 for CaS1-x 

{(a)-(c)}. Through Fig 6, one can notice that the refractive index increases
monotonically with increasing concentration x content over the entire of 0
for all models used. However, it does not behave in a similar fashion on
going from one model to another one. This is clearly seen from the
following quadratic polynomial fit to these

alloys, respectively. The spinodal curve in the phase diagram marks 
 gap. For temperatures 

and compositions above this curve a homogeneous alloy is predicted. The 
indicates that the alloy 
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) represent the real and the imaginary parts of the 
), depends on the joint 

density of state and the momentum matrix elements. The real part of the 
), was obtained from by the Kramers-Kronig 

ofthe semiconductor alloys are important 
and essential in the design and fabrication of devices. In the design and 

optical dielectric constants 
of the material of interest have to be known as a function of composition 
and wavelength. In this theoretical work, we calculated the refractive index 

with different models. 

Fig.5. Refractive index of the of CaS1-

x 

E. CONCLUSION

In summary, we have studied the structural, electronic, optic and
thermodynamic properties of CaS
LAPW method. We have optimized the lattice parameter for binary
compounds as well as for alloys. The lattice constant of CaS
alloys exhibits a small deviation
parameters is equal to -0.00437
thermodynamic stability allowed
temperatures for CaS1-xSex alloys, which is 357.8. Finally we have
reported the optoelectronic properties
calculated refractive index and optical dielectric constants for the
parent compounds show better agreement
Compositional dependence of the optical and electronic properties
studied is also investigated. 
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CONCLUSION 
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