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Abstract — Motors are by far the most important type of 
electric charges, and so constitute the main targets to 
achieve energy saving. Every effort to save energy in mo- 
tor application can be made by always attempting to use 
energy only as much as what needed during its operation. 
It can be achieved by optimizing the induction motor de- 
sign. This paper presents a firefly algorithm for optimizing 
the IM design considering different formulations in order 
to show how we can handle the design process for certain 
characteristics. The proposed method has been applied to 
optimize the design of squirrel cage induction motor hav- 
ing specifications 37kW, 380V, 60Hz. The validity of the 
design results is clarified by comparison between calculat- 
ed results and existing ones. 

 
Keywords: Energy saving, Squirrel cage induction motor, 
Formulation, Optimization, Firefly algorithm 

 
1. Introduction : 

 
Squirrel cage induction motors (SCIM) are the most energy 

consuming electric machines in the world, intelligent use of 
energy means higher productivity with lower active energy 
and lower losses at moderate costs. The induction motor (IM) 
has been, intensively, studied and described in the literature 
during several decades. They are employed in great quantity 
in different applications and have a significant impact on the 
consumption of electricity. Consequently, their design takes a 
great importance [1], [2], [3]-[13]. As induction machines are 
now a mature technology, there is a wealth of practical 

of the gradients of the fitness function and constraints. Nor do 
they require an already good initial design variable set as most 
nongradient deterministic methods do. 

Though heuristic algorithms such as GA have been em- 
ployed to solve IM design problems, recent research has iden- 
tified some deficiencies in GA performance and also for PSO 
often suffers from the problem of being trapped in local opti- 
ma [4]. 

In this paper, the optimum design method is introduced to 
minimize the total losses of the high efficiency induction 
motor by using firefly algorithm optimization. 

2. Conventional method and model validation: 
 

Results simulation of the model are calculated by equivalent 
circuit method [14] and the characteristics of SCIM are com- 
pared with simulation and experimental results obtained in 
[10]. Table 2 shows the results of equivalent parameters and 
efficiency, power factor and rated phase current results. Their 
values are closer to analysis and optimum model test results 
presented in [10]. 

Note that the leakage reactance of stator and rotor (Xs and 
Xr) is calculated considering leakage flux lines which cross the 
stator and, respectively, the rotor slots, end-turn flux, zig-zag 
flux, and air-gap flux. The rotor resistance (Rr) is equivalent 
value using bar and end-ring resistance. 

Table 1. Specification of 37 kW three phase SCIM 

knowledge, validated in industry, on the relationship between    
performance constraints and the physical aspects of the induc- 
tion machine itself. 

 
In the literature numerous stochastic searching algorithms 

have been used to solve the IM design problems. Such as GA 
(Genetic Algorithm) [5], [10], [12], PSO (Particle Swarm 
Optimization) [2], [4]-[5], EA (Evolutionary Algorithm) [7] 
and Hooke Jeeves Method [1]. Such optimization approaches 
tend to find the global optimum but for a larger computation 
time (slower convergence). They do not need the computation 

Item Value 

Phase number 3 

Input voltage [V] 380 

Frequency [Hz] 60 

Output power [kW] 37 

Pole number 4 

  
Stator Out Diameter [mm] 343 

Shaft Diameter [mm] 70 
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Table 2. Model validation 

can be often formulated in different ways, using different 
objective function, different constraints and variables. Fur- 

      thermore, the formal description of optimization problems has 
an impact on the applicability and efficiency of the corre- 
sponding solution methods. Indeed, the study of reformula- 
tions is an active research area in the optimization community 
[13], [15]-[16]. The optimization problem of SCIM can be 
formulated as follow: 

min lossesDis 



, d1 , d 2 

 
, hr 

 
, btr 

 
, bts 

 
, bs1 

 
, bs 2 , hr 

s.t. 




cos   0.861 

  0.936 
Tc0  101 


 LR 


 LR 

 6 

 1.75 

2

3. Definition of the optimization problem  tbk  2.5 


The goal of the optimization is to minimize losses in SCIM 
in order to reduce energy consumption. The optimal design 

Dout 
D 

 343 
 70 

parameters of the motor can be obtained by solving a con- 
strained nonlinear optimization problem. The problem consists 

shaft 

of an objective function which is optimized (minimized) sub- 
ject to a set of constraints. A typical form for the addressed 
optimization problem can be expressed in the form: 

 

min F x
 g j x  0;   j  1   me 

Where ∑ losses (W) is the total losses of the induction mo- 
tor including stator (Pc0) and rotor loss (PAl), iron loss (Piron), 
friction and windage loss (Pmv) and stray load loss (Pstray). Dis 
(m) the stator bore diameter, d1 (m) the rotor higher slot diam- 
eter, d2 the rotor lower slot diameter (m), hr the rotor slot use- 
ful height, bts the rotor tooth width (m) the stator tooth width, 
hs (m) the stator slot useful height, bs1 (m) the slot lower 


s.t. 


g j x  0; 
X  X  X 

j  me  1,. ......... , m 1 width, bs2 (m) the slot higher width, ɳ the efficiency, Tc0 the 
winding temperature, iLR the per unit locked current, tLR the 
per unit locked torque. 

 low high 

where X  X 1 , X 2 ,..., X n 

A good solution of an optimization problem is obtained by 
means of both an appropriate model (also called formulation) 
and an efficient algorithm to solve it. The aim of this paper is 
to investigate the efficiency and reliability of stochastic opti- 
mization solvers when handling different mathematical formu- 
lations. We present the impact of such different formulations 
on solver performance with the aim of providing guidelines 
for designers in practical engineering applications. 

 
4- Formulation of the optimization problem 

In this work we discuss four different formulations but 
mathematically equivalent because the only difference is the 
choice of number of variables and constraint, also the quality 
of used constraints. We discuss about the four following for- 
mulations: 

 
i. Formulation 1: 

 Dis, hs, hr, bs1, bs2, bts, btr, d1, d2 9 variables 
 Losses is a function depending on Dis, hs, hr ... 
 Equations in (2) yield 6 inequalities constraints and 2 

equality ones: Dout, Dshaft 
 Add constraints to the bounds of the variables 

The problem consists of an objective function which is op- ii. Formulation 2 
timized (minimized) with a set of constraints. Choosing the 
objective function is very intricate in real applications which 
have to observe many contradictory requirements such as: 
improving the motor efficiency and power factor, reducing the 
motor size and weight, improving the locked torque, reducing 
the locked current and limit the components temperature to a 
feasible level. It is known that the same optimization problem 

 Dis, hs, hr, bs1, bs2, bts, btr, d1, d2 9 variables 
 Losses is a function depending on Dis, hs, hr ... 
 Equations in (2) yield 2 inequalities constraints and 2 

equality ones: Dout, Dshaft 

Items Unit Conventional 
                                                                      method 

Ref model [10] 

Efficiency % 93.23 93.6 
Power factor % 86.44 86.1 

Rated phase current A 69.7555 69.9 
Stator resistance (Rs) 

  at 25℃ 
Ω 0.0594 0.0483 

Rotor resistance (Rr) at 
  25℃ 

Ω 0.0333 0.0266 

Stator leakage reactance 
  (Xs) 

Ω 0.3125 0.232 

Rotor leakage reactance 
  (Xr) 

Ω 0.2812 0.278 

Magnetizing reactance 
  (Xm) 

Ω 7.9196 7.68 
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min lossesDis 
 , d1 , d 2 , hr , btr , bs1 , bs 2 , hr  The firefly algorithm (FA) is a novel metaheuristic 

algorithm. It was first developed by Xin-She Yang in late 

s.t. cos   0.861 2007 and 2008. Its idea is based on the behavior of fireflies. 

 Tc0 

 D 
 101 
 343 

3
The algorithm uses the difference in light intensity that is 
proportional to the value of the objective function. Each 
individual has a certain attractiveness which determines the 

 out 

 Dshaft   70 

 Add constraints to the bounds of the variables 
 

iii. Formulation 3 

direction of movement. All fireflies are characterized by light 
intensity associated with the objective function [17], [19]. 
Yang was used three rules for the FA [18], [20]: 

 
 All fireflies are unisexual and every firefly attracts/gets 

attracted to every other firefly. 
 The attractiveness of a firefly is directly proportional to 

 Dis, hs, hr, bts, btr, d1, d2 7 variables 
the brightness of the firefly. (The brightness decreases as 
the distance increases.) 

 Losses is a function depending on Dis, hs, hr ... 
 Equations in (2) yield 6 inequalities constraints and 2 

equality ones: Dout, Dshaft 

min  lossesDis , d1 , d 2 , hr , btr , bts , hr 

 They move randomly if they do not find a more attractive 
firefly in adjacent regions 

The movement of a firefly i is attracted to another more 
attractive (brighter) firefly j is determined by 

s.t. cos  0.861 xt1  xt   er 2 xt  xt   t 
   0.936 

i    i 0 

e ij 

j i t i 

 Tc0  101 Where 
r 2 

0 attractiveness between the i-th and j-th 

 LR 


 LR 

 6 

 1.75 

4 firefly ri j is Cartesian distance between i-th and j-th firefly The 
FA implementation steps are listed below [19]: 

Table. 3 Pseudo code of the firefly algorithm (FA) 
 tbk  2.5 

 out  343 
 Dshaft  70 

 
 Add constraints to the bounds of the variables 

 

iv. Formulation 4 
 

 Dis, hs, hr, bts, btr, d1, d2 7 variables 
 Losses is a function depending on D , h , h 

 
 
 
... 

is s r 

 Equations in (2) yield 2 inequalities constraints and 2 
equality ones: Dout, Dshaft 

 

min  lossesDis , d1 , d 2 , hr , btr , bts , hr 





5. Simulation and results 

s.t. cos  0.861 

 Tc0 

 D 
 101 
 343 

5 In order to compare FA performance and compare it be- 
tween optimum model and optimization approach used in 
[14], numerical simulation have been conducted in which 

 out 

 Dshaft   70 

 Add constraints to the bounds of the variables 
 

4. Firefly algorithm: 

formulation 1, formulation 2, formulation 3 and formulation 4 
shown in section 4 are better. Each formulations were execut- 
ed with the same population size m = 10, iteration number N = 
50. The algorithm stop after 500 function evolution. The 
obtained results are presented in Tab. 4, Tab. 5 and Tab. 6. 

Firefly algorithm 

Objective function f(x), x=(x1,…,xd)
T 

Generate initial population of fireflies xi=(i=1,2,…,n) 
Light intensity Ii at xi is determined by f(xi) 
Define light absorption coefficient γ 
While (t<MaxGenerqation) 
for i=1:n all n fireflies 
for j=1:n all n fireflies (inner loop) 
if (Ii<Ij), Move firefly I towards j: end if 
Vary attractiveness with distance r via exp (-γr) 
Evaluate new solutions and update light intensity 
end for i 
end for j 
rank the fireflies and find the current global best 
end while 
Postprocess results and visualization 
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  Copper loss 

Aliminium loss 

Iron loss 

Efficiency 

Table. 4 Comparison between optimized design for formulation 1 and 2. which is far from the best one. However we remark that for- 
mulation 2 and 4 give the best results. The efficiency is little 
higher for formulation 4 (93.68%) than for formulation 2 
(93.6%). 
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As is observed in table 4 the optimization with more con- 

straints has high efficiency and the power factor constraint is 
not satisfied, we can note that formulation 2 gives the best 
solution. From results in table 5, we remark that formulation 4 
with fewer variables and fewer constraints gives the best result 
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Evaluations 

in terms of the best found solution. 
 

The performance of the FA algorithm is emphasized by 
comparing its results with those of the conventional design 
method and the optimum model test [10] in table 6. 

 
Table. 5 Comparison between optimized design for formulation 3 and 4. 

Fig.1 Evaluation of objective function during optimization process for differ- 
ent formulations 

 

In an optimization program there should be the flexibility to 
declare any of the problem functions an objective function or 
others of them as constraints. The reason for such an option is 
that we may not always be interested in maximizing efficiency 
or reducing cost. Depending on the need, the choice must be 

      left to the designer. 
 
 
 

800 94.3 
 
 

700 94.2 
 
 

600 94.1 
 
 

500 94 
 
 

400 93.9 
 
 

300 93.8 
 
 

200 93.7 
 
 

100 93.6 

 

From these tables, it is most clear that, using the formulation 
with fewer variables and fewer constraints allows to obtain the 
best solution. 

 
The plot in fig. 1 represents the variation of the objective 

function during optimization process for four different formu- 
lations. It can be seen from the function evolution that using 
more constraints lead to important decreasing of function 
value. We found that formulation 1 and 3 provide a solution 

 
0 93.5 

0 1 2 3 4 5 6 
Formulation 

 

Fig.2 Loss and efficiency .vs. formulation 
 

In figure 2 we compare four formulations in terms of the 
best solution found, considering different choices of design 
variables and constraints. It is seen that efficiency for each 
formulation satisfies high efficiency level (> 93.0%). However 
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Items Formulation 1 Formulation 2 Conventional 
                                                                                                          design 

Dis [mm] 115 188.8083 221 

d1 [mm] 6.1333 6.6190 7.3477 

d2 [mm] 2.0039 2.2284 2.8419 

hr [mm] 29.6675 29.5218 28.6257 

btr [mm] 8.3090 8.4635 9.2754 

bts [mm] 7.7836 7.6326 8.2721 

hs [mm] 28.2564 28.7046 29.4923 

bs1 [mm] 6.2258 5.8526 6.5195 

bs2 [mm] 10.0353 10.1813 10.3856 

Power factor [%] 85.49 86.1 86.44 

Efficiency [%] 94.27 93.6 93.23 

Temperature of 
winding [°C] 

102.4672 109.3804 112.2971 

 

Items Formulation 3 Formulation 4 Conventional 
design 

Dis [mm] 115 178.5319 221 

d1 [mm] 6.2028 6.5318 7.3477 

d2 [mm] 2.0958 2.3480 2.8419 

hr [mm] 29.0283 29.4876 28.6257 

btr [mm] 9.0523 8.7098 9.2754 

bts [mm] 7.8289 7.9924 8.2721 

hs [mm] 28.5358 28.8196 29.4923 

Power factor [%] 85.51 86.02 86.44 

Efficiency [%] 94.25 93.68 93.23 

Temperature of 
winding [°C] 

103.3586 109.3715 112.2971 
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Table 6. Change of performance parameters with formulations 

 
Items Formulation 1 Formulation 2 Formulation 3 Formulation 4 Optimum model [10] Conventional design 

Stator copper loss 
[W] 

617.9047 788.1237 617.9047 777.0595 906 867.5804 

Rotor Alimunium 
loss [W] 

327.1347 365.9811 327.3180 363.1499 488 383.8568 

Iron loss [W] 491.5146 559.5209 493.7658 554.0259 497 622.7908 

Power factor [%] 85.49 86.1 85.51 86.02 87.1 86.44 

Efficiency [%] 94.27 93.6 94.25 93.68 93.6 93.23 
 

other performances are not achieved to the goal such as power 
factor as discussed above for formulation 1 and 3. This proves 
the non-equivalence of the four formulations in a numerical 
sense. Moreover we note that formulation 2 and 4 give closer 
results. We remark that formulation 4 is more efficient provid- 
ing satisfactory constraints. Therefore, this seems to show that 
it is beneficial to reduce the zone of research in order to im- 
prove the chances to find the global minimum. 

 
5. Conclusions 

The proposed paper has presented a bird’s eye view of the 
research work under progress. We have discussed the solu- 
tions found using four reformulations of SCIM design prob- 
lem showing that the formulation of optimization design has 
significant impact on final optimal structure and performanc- 
es. If properly utilized, the optimization will lead to the design 
that satisfies all imposed requirements. The results of the FA 
algorithm are compared those of the Analysis, test and con- 
ventional design method, which show the effectiveness of the 
proposed method in terms of solution quality, convergence 
and computational efficiency. 

The design process proposed in this paper will be useful for 
minimizing total losses in SCIM design with fewer design 
variables and fewer constraints. It seems to be more efficient 
to use this formulation. 
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