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Abstract— Despite technological advances and progress in 

industrial systems, the fault diagnosis of a system remains a very 

important task. In fact, an effective diagnosis contributes not 

only to improve reliability but also to decrease in maintenance 

costs. This paper, presents a diagnosis approach of hybrid 

systems thanks to the use of Timed Automata and Neural 

Networks. Dynamic models (in normal and failing mode) are 

generated by a Timed automata based methods as well as 

through state equations generated by Neural Networks (NN) 

model. The procedure of fault localization through a method 

based on the Neural Networks does not allow locating faults with 

the same signature of failure. Thus the diagnosis technique for 

the localization of these defects will be based on the time analysis 

using Timed Automata. The proposed approach is then validated 

by simulation tests in a water tank. 

 

Keywords— Fault Diagnosis, Timed Automata, Fault 

Localization, Neural Networks. 

I. INTRODUCTION 

Improvement in the dependability of systems rests 

essentially on algorithms of detection and isolation of defects. 

These algorithms mainly consist in comparing the actual 

behavior of a system with a behavior of reference systems 

describing normal functioning (in order to detect defects) or 

describing different kinds of defects (In order to analyze and 

isolate faults),  while reducing false alarms, non-detections as 

well as delays in detection of defects. In surveillance 

approaches based on quantitative models performances of 

detection procedures and localization of failures strongly 

depend on the used model. Once the last is generated, failure 

indicators can be deducted. Obtaining such model is a 

complex and difficult task more particularly for the process 

engineering systems because of their diversity and coupling 

energies which characterize them. 

Classical techniques for detection, localization and 

diagnosis show their limits, especially for systems which 

become increasingly complex, which Hybrid Dynamic 

Systems (HDS). HDSs [1] are systems composed of dynamics 

of a continuous and discrete nature interacting between them; 

continuous dynamics is represented by differential equations 

and discrete dynamics by state transitions. 

To obtain good performance in terms of coverage and high 

quality of isolation, research is directed towards coupling 

approaches and using their complementarily. The coupling of 

continuous / discrete approaches must achieve good 

performance. 

In this paper, we propose an approach based on the use of 

Neural networks well known in continuous field, attached to 

timed automata used in the field of discrete events systems [2]. 

For a complex system, neural networks can solve non-linear 

and multi-variable problems, then store knowledge compactly 

and finally learn online and in real-time [3]. Timed automata 

[4, 5] allow to take into account the dynamic evolution of the 

system and their failures propagation. The diagnoser built by 

automaton can refine the location of the fault [6]. As shown in 

the flowchart of Figure 1. 

 

 
 

Fig.1. Flowchart of the proposed approach 
 

 

 

 

Neural 

network 
model 

Timed 
Automata 

 

Input 

 

u (t) 

List of failed components 

Continuous model Discrete event model 

Process 

Hybrid Dynamical 
Systems 

  Sensors  

States 

 

S 
 

Actuator  

States 

 

E 

        Output 

 

y (t) 

Admin
Typewritten Text
5 th International Conference on Control & Signal Processing (CSP-2017)
Proceeding of Engineering and Technology –PET
Vol.26 pp.139-144

Admin
Typewritten Text
Copyright IPCO-2017
ISSN 2356-5608



II. DIAGNOSTIC APPROACH BASED ON A HYBRID MODEL 

Many industrial processes are hybrid in nature, which 

means that their behavior results from the evolution and 

interaction of continuous variables and discrete variables. For 

this type of system, little work has been devoted to detecting, 

locating or diagnosing failures [7]. The literature in this field 

is abundant and numerous solutions have been proposed for 

continuous and discrete systems, linear and nonlinear. 

The mixed approach, proposed in this paper, is based on a 

combination of two models (continuous and discrete). The 

continuous component is described by a set of differential 

equations obtained by neural networks and the discrete 

component by a finite state automaton. This approach evolves 

through an alternation of continuous steps, where state 

variables and time evolve continuously, and discrete steps 

where several discrete and instantaneous transitions can be 

crossed. The diagnostic method combines the advantages of 

the both approaches (Neural Networks and Timed Automata) 

for best performance, particularly in the fault locating phase. 

Each step is described in a conventional form. 

A. Fault Diagnosis Approach 

The neural networks model under the normal condition is 

established in the equation (2) and (3). Therefore, a fault can 

be detected by observing residual values, which are defined as 

the difference between the actual measured values under a 

fault condition and the expected values under the normal 

condition.  

The output residual of a dynamic model can be calculated 

by: 

e( k ) y( k ) yr( k )                                                                (1)                                                                                                                               

The sum of square residual can be calculated as: 
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Where N , is the length of the observation.  

Assume that the threshold value  , then the fault can be 

determined by: 
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and 02J  , where 0J  is the sum of square residual under 

normal condition. 

 

In this paper, the learning rate is 0 42.  , the 

regularization coefficient is 1  , the hidden neurons are 25, 

and the output neuron is equal to 1. 

We notice that the two real and estimated curves are 

combined, which shows the effectiveness of the neuronal 

estimator to give a value close to the reality, and this gives us 

the confidence to use this type of estimator in this applications. 

 

B. Principle of neural modeling  

In this part, the principle of the dynamic neural modelling 

of the nonlinear multivariable systems is proposed. This 

principle is given in Figure 2. 

A nonlinear multivariable system given by the following 

form: 

 ( 1) ( ),..., ( 1),..., ( ),..., ( 1)y k f y k y k ns u k u k nu       

with: 

:f unknown function of model process  

 1 2( ) ( ) ... ( ) ,(1 )nuU u k u k u k nu  being the input of 

the process, 

 1 2( ) ( ) ... ( ) , ( 1)
T

nsY y k y k y k ns  being the output 

of the process, 

 1 2( ) ( ) ... ( ) , ( 1)
T

nsY r yr k yr k yr k ns  being the 

output of the NN, 

 1 2( ) ( ) ... ( ) , ( 1)
T

nsE e k e k e k ns  being the error 

vector, 

( ) ( ) ( ) :i i ie k y k yr k  error between the i th measured 

output and the i th NN output, 
:x The NN input vector, ( 1),( ),t t nu ns    

:ncc The number of nodes of the hidden layer,  

:W The synaptic weights of the layer towards the hidden 

layer, ( )ncc t , 

:Z The synaptic weights of the hidden layer towards the 

output layer, ( )ns ncc ,  

:s The activation function, 

: The learning rate, 

: The scaling coefficient used to expand the range of NN 

output, 

:TDL The Tapped Delay Line block. 

 

The output of the l th hidden node ( 1,..., ) :l ncc  
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( ) :ls net output of the l th node of hidden layer. 

The i th  NN output ( 1,..., )i ns is given by the following 

equation: 
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Finally, the compact form is defined as: 

( 1) ( )TYr k s Z S Wx                       (6) 

with 
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Fig.2. Principle of the neural modelling of the multivariable system 

C. Neural networks estimator 

On the basis of the input and output relation of a system, 

the nonlinear system can be expressed by a NARMA 

(Nonlinear Auto-Regressive Moving Average) model [8, 9], 

that is given by the following from: 

1 1 1y uy( k ) f y( k ), , y( k n ),u( k ), ,u( k n )                       
(7) 

Where f (.)  represents the non-linear function mapping 

specified by the model, y( k )  and u( k )  are real, ( y( k )R  

and u( k )R ) are the outputs and the inputs of the system 

respectively. k  is the discrete time index. yn and 
un  are the 

number of the past output and input samples required for the 

prediction. 

The used neural networks, in this paper, is a multilayer 

perceptron with tapped delay lines (TDL) of both the input 

and the output. The delay elements are used to introduce 

delayed inputs and outputs that are then fed to a static network 

as the repressor vector, so that the predicted neural network 

output will follow the target output. 

The estimated ratio between the open circuit voltage and 

the standard open circuit voltage using neural networks 

yr( k ) is given by the following equation: 
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  , 11l , ,N , s is a sigmoid 

function, ljw  and lz are respectively the hidden synaptic 

weights and the output synaptic weights, jx  is the input 

vector of neural network,  is a regularization coefficient, 

0N  is the number of the input neurons and 1N  is the number 

of the hidden neurons. In the compact form: 

1 Tyr( k ) s z S(Wx )   
                                       

(9)                                                                                                            

With  1 lS(Wx ) s( net ) s( net )
 

and  1 lS'(Wx ) diag s'( net ) s'( net ) . 

The update of the hidden synaptic weights and the output 

synaptic weights are given as follows:  

1lj lj ljw ( k ) w ( k ) w ( k )   
                                     

(10)                                                                                                        

1l l lz ( k ) z ( k ) zw ( k )   
                                       

(11)                                                                                                              

With: 
T

lj l lw s'( net )S '(Wx )z x e( k ) 
                               

(12)                                                                                                            

l lz s'( net )S(Wx )e( k ) 
                                       

(13)                                                                                                                       

D. Discrete event model: Fault diagnosis through the Timed 

Automata 

The timed automata tool [10, 11] is defined as a finite state 

machine with a set of continuous variables named clock. 

These variables evolve continuously in each location of the 

automata, according to an associated evolution function. As 

long as the system is in one state Si, the clock xi is 

continuously incremented. Its evolution is described
 
by 1X  . 

The clocks are synchronized and changed with the same step. 

An invariant is associated to each state. It corresponds to 

conditions needed to remain in the state. The number of 

clocks depends on the parallelism in the system. The automata 

can stay in one state as long as the invariant condition is 

checked. Each transition of an automata is conditioned by an 

event or temporization called “guard” and its execution 

determines the discrete evolution of the variables according to 

its associated assignment. 

Let us consider the timed automata given in Figure 3. This 

automata has two clocks x and y. The continuous evolution of 

time in this model is represented by 1x   and the labeled arcs 

in the graph represent the model of discrete evolution. The 

guard in each arc is a transition labeling function that assigns 

firing conditions with the transitions of the automata. The 

affectation is a function that associates with each transition of 

the automata with relation that allows actualizing the value of 

continuous state space variables after the firing of a transition. 

The invariant in the state S0 and S1 are respectively y ≤ 5 and 

x ≤ 8. The initial state of this system is represented by an input 

arc in the origin state (S0). In the dynamic model active clocks 

are found in each state. A graphical interpretation of the timed 

automata is the automata graph (Figure 3). 



 
Fig. 3. Example of Timed Automata. 

 
 

Our objective, thanks to the use of timed automata, is to 

build a diagnosis system called diagnostician which allows to 

analyze, detect and locate a fault in a system. The construction 

of the diagnostician is based on a dynamic model representing 

different functioning modes of the monitored system (normal 

and failing). The dynamic model is neither more nor less a 

copy of a control-command program of the system to 

diagnose with added time information such as the duration of 

different steps of functioning, the execution order of tasks and 

the date of event appearance. 

III. APPLICATION EXAMPLE 

A. Description of the system  

We consider as example a one tank hydraulic system, 

Figure 4. The tank filling system allows the mixing of 

ingredient A through the valve VA with ingredient B through 

the valve VB. The valve VS makes it possible to drain the 

tank. The sensors L2 and L3 give information on the tank 

level. Finally, the L1 level sensor detects the moment when 

the tank is empty or not, while the L4 level sensor activates an 

alarm in case of an overflow. 

 
Fig. 4. One tank hydraulic system 

 

S0: The process is initialized, consequently the tank should 

be empty. 

S1: Firstly, the valve VA is opened, the ingredient A flows 

into the tank. 

S2: If the level L2 is reached, then the valve VA is closed 

and the valve VB is opened. 

S3: If the level L3 is reached, then the valve VB is closed 

and the valve VS is opened in order to drain the tank. 

There are two potential defects of the system that concern 

the valves, and two potential defects of the system that 

concern the sensors. 

▪ The two defects that concern the valves are: The 

valve remains opened in spite of the closing request. The 

valve remains closed in spite of the opening request. 

▪ The two defects that concerns the sensors are: The 

sensor failed to detect higher level. The sensor does not detect 

the lower level. 

B. Simulation results 

Figure 5 shows the Diagnostic the valve VA stucks closed 
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               Fig. 5. -a. Functioning mode results,     -b. Failure mode results 

 

In figure 5, we present the neural networks model of the 

system with and without fault. It is noticed a good 

corresponding between the system and the neural model. 

For a better understanding of the principle of the diagnostic, 

the figure 5 makes it possible to compare a normal process 

with a faulty operating condition. On the figure 5 a, we have 

the standard functioning of the process and on the figure 5 b, 

an operation failed. 

 

In figure 6, we present the estimate error in the two cases 

with and without fault. 
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Fig. 6.  Residual results 

 

● Functioning mode results                  

r1 = tank level- estimated tank level 

r2 = Low level sensor L2 - estimated Low level sensor L2 

r3 = High level sensor L3 - estimated High level sensor L3 

In the table 1, we present the different characteristics of the 

estimate error.  i=1, 2, 3. 

 
TABLE I 

FUNCTIONING MODE RESULTS 

 min(ri) max(ri) MES(ri) 

r1 -9.9998e-04 9.9896e-04 8.9506e-07 

r2 -9.9902e-04 9.9449e-04 9.5301e-07 

r3 -9.9738e-04 9.9954e-04 9.5337e-07 

 

● Failure mode results 

r4 = tank level- estimated tank level 

r5 = Low level sensor L2 - estimated Low level sensor L2 

r6 = High level sensor L3 - estimated High level sensor L3 

i=4, 5, 6. 
TABLE III 

FAILURE MODE RESULTS 

 min(ri) max(ri) MES(ri) 

r4 -9.9983e-04 9.9338e-04 9.0834e-07 

r5 -9.9392e-04 9.9449e-04 9.3885e-07 

r6 -9.9292e-04 9.9954e-04 8.4556e-07 

IV. CONCLUSION 

In this paper we tackled the problem of fault diagnosis in a 

hybrid system using Neural Networks and Timed Automata. 

The dynamic models (in normal and failing mode) are 

generated by the Neural Networks. 

The Neural Networks based method consists of generate 

residuals which are calculated by making the difference, 

eventually filtered between actual output and those estimated. 

Today this very powerful method allows accomplishing 

objectives for detection and localization of faults in an 

effective and fast way. Nevertheless, the fault location 

procedure by the Neural Networks based method does not 

allow locating faults having the same signature failure. To fix 

this problem, diagnosis technique for location of these defects 

is based on analysis time using timed automata. 

A perspective of this work is to extend our approach to take 

into account the diagnosis problem when the system is 

affected simultaneously by actuators and sensors faults. 

Another problem not addressed in this paper would be study 

and the mastery of propagation of defects in a hybrid system. 
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