
 

 

Abstract— In situation where the development of 

degradation model based on first principles is difficult or 

the extracted features from data-driven model do not 

exhibit an obvious trend in order to enhance the 

prediction of the Remaining Useful Life (RUL), we must, 

therefore, be addressed to the identification of new 

features having an obvious trending quality. In this 

context, this paper brings a new feature selection method, 

based on preprocessing further the extracted features in 

such a way that the identified prognostic feature results in 

an obvious trending quality. This method was validated on 

a set of experimental data collected from bearings run-to-

failure tests.  

 
Index Terms— Fuzzy neural networks; Prognostics and 

health management; Remaining Useful Life; Particle 
Swarm Optimization; Particle Filters. 

 

I. INTRODUCTION 

HE prognostic is the key process of Prognostics and 

Health Management (PHM). Its main goal is to predict the 

Remaining Useful Life (RUL) with a confidence interval 

during which the failure is expected to occur [1],[2] in order to 

decide plan of maintenance interventions for the most 

convenient and inexpensive times. 

Among various prognostic approaches, data driven 

techniques are easier to deploy when it is hard to understand 

first principles of an equipment to build a prognostics model. 

In such case, degradation-based prognostic algorithms involve 

trending some measure of degradation, even sensed or pre-

processed, called a prognostic feature. A good prognostic 

feature should well capture the trend of the fault progression 

through the entire component/system life. If the trend of the 

prognostic feature is not obvious or if it occurs right before a 

failure of the component as shown in Fig. 4 , it is difficult to 

make an accurate prediction [3]. 

Few authors attempt to address this issue like [3]-[4] who 

have proposed a genetic algorithm method to identify an 

optimal set of prognostic features from a population of 

features. This method was based on a set of metrics for the 

fitness function to evaluate the suitability of the identified 

feature for the prediction task namely monotonicity, 

prognosability, and trendability. 

In the same context, [5] proposed an optimization approach 

that uses Genetic Programming (GP) to discover the advanced 

features highly correlated with the fault growth by randomly 

combining mathematical operators, analytic functions, 

constants, and state variables using the monotonicity as the 

only metric. However, the difficulty lies in determining failure 

threshold of the identified feature when different input 

features are involved by the GP. Therefore, keeping the 

original features for determining the threshold is essential. 

On the other hand, the authors in [6] instead, proposed to 

use a fitness function based on the separability measure of 

consecutive time segments to evaluate the suitability of 

features extracted from raw signals to RUL prediction. 

Taking the advantage of these previous endeavors, we 

have proposed to address this issue by further preprocessing 

the extracted features using an intelligent selection method or 

transforming them to their cumulative form. Again, the 

technique used to predict the RUL is a recursive Bayesian 

estimation technique called particle filtering (PF). Analytic 

expressions are often used to model the degradation process in 

this technique to fit the given data even linear, exponential or 

logarithmic. But in our case there is not such trivial case as the 

data exhibit a complex shape. To address this issue, we 

propose a Neuro-Fuzzy system (NFS) predictor that fit 

perfectly the degradation process. 

This paper is organized in such a way that follows the 

steps of a typical health monitoring system. Giving a brief 

theory for the technique used, Starting from feature extraction 

step in section, then the selection step which is the cornerstone 

of our approach. After the identification of the appropriate 

prognostic feature, the prediction of the remaining useful life 

(RUL) is carried out using the particle filtering method with 

the integrated NFS in section 3. The validation step ends our 

approach by the description of the experimental setup and the 

comments of the results which are given in section 4.1, and 

4.2 respectively. A proposition of the embodiment aspect of 

this approach is given in section 5. Finally a conclusion is 

drawn in section 6. 

II. METHODOLOGY 

A. Data acquisition step 

The choice of bearings to validate this study can be 

explained by the fact that these components are considered as 
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the most common mechanical elements in industry and are 

present in almost all of industrial processes, especially in those 

using rotating elements and machines. Moreover, bearings are 

the main components which most frequently fail in rotating 

machines. Vibrations occupy a privileged position among 

sensored data to be considered when monitoring the condition 

of rolling bearings without effecting their operation. 

B. Feature extraction step 

The feature extraction step aims to map the acquired data 

into a feature space which is relevant to the equipment health 

state using various signal processing techniques. 

Vibration signals can be processed in time domain, 

frequency domain or time-frequency domain [7].  

More signal processing methods can be employed to 

extract features in this step as well [7]. The overall features 

used in this paper are listed in table I. 

There are 153 features extracted from vibration sensor for 

both PHM case studies shown in table I, none of them exhibits 

an obvious trend. 

III. REMAINING USEFUL LIFE PREDICTION 

The Particle filtering is an emerging and interesting 

technique for sequential signal processing based on the 

concepts of Bayesian theory and Sequential Importance 

Sampling (SIS). It is very suitable for nonlinear systems and in 

presence of non-Gaussian process/observation noise [8]. 

A. Bayesian estimation and resolution by particle filter 

In The objective of the tracking is to estimate recursively 

the state probability distribution at time 𝑘 by constructing the 

probability density function 𝑝(𝑥𝑘 |𝑧1:𝑘 ) from: 

Firstly, the state model describing the evolution of the 

system state (in our case, the state is the bearing degradation 

feature). 

𝑥𝑘 =  𝑓 (𝑥𝑘−1, 𝑣𝑘−1),      𝑓𝑜𝑟 𝑘 > 0                 (1) 

where 𝑓 is the transition function from the state 𝑥𝑘−1 to 

next state 𝑥𝑘  generally nonlinear, 𝑣𝑘−1 is non-Gaussian 

distributed noise.  

Secondly, the measurements introduced by the second 

equation; the observation model 

𝑧𝑘 = 𝑕 𝑥𝑘 , 𝜀𝑘 ,        𝑓𝑜𝑟 𝑘 >  0                      (2) 

where 𝑕 is the observation function and 𝜀𝑘  is non-Gaussian 

distributed noise. We assume that the initial PDF 𝑝(𝑥0) of the 

state is given. So, 𝑝(𝑥𝑘 |𝑧1:𝑘 ) is obtained recursively in two 

steps: 

Prediction: 

𝑝 𝑥𝑘  𝑧1:𝑘−1 =   𝑝(𝑥𝑘 |𝑥𝑘−1)|𝑝(𝑥𝑘−1|𝑧𝑘−1)𝑑𝑥𝑘−1      (3)  

Update: 

𝑝 𝑥𝑘  𝑧1:𝑘 = 𝑝 𝑧𝑘  𝑥𝑘  . 𝑝(𝑥𝑘 |𝑧1:𝑘−1)/𝑝(𝑧𝑘 |𝑧1:𝑘−1)    (4) 

The recursive computation of the posterior state pdf 

 𝑝 𝑥𝑘  𝑧1:𝑘  is more conceptual than practical, since there is no 

analytical solution to the integrals in equation (3). As a result, 

several estimation approaches have been developed to address 

this issue using filtering framework such as Kalman filter or 

particle filter depending on the hypotheses of the problem [8]. 

In this paper, a particle filtering method is employed to 

approximate the solution. 

B. Particle Filtering Approach 

Particle filtering employs a Sequential Importance 

Sampling algorithm. The posterior PDF can be approximated 

by a swarm of random samples named particles with 

associated weights representing the discrete probability 

masses, [9]-[11]: 

𝑝(𝑥𝑘 |𝑧1:𝑘)  ≈  𝑤𝑘
𝑖 𝛿(𝑥𝑘 − 𝑥𝑘

𝑖 ) ≈
1

𝑁
 𝛿(𝑥𝑘 − 𝑥𝑘

𝑖∗)       (5)

𝑁

𝑖

𝑁

𝑖

 

where 𝑤𝑘
𝑖  is the weight of the 𝑖𝑡𝑕  particle at time k, 𝑥𝑘

𝑖  is the 

𝑖𝑡𝑕  particle at time 𝑘, N is the total number of particles and 

𝛿( ) is the Dirac delta measure. 

The weights are updated as follow: 

𝑤𝑘
𝑖 ≈ 𝑤𝑘−1

𝑖 𝑝(𝑧𝑘 | 𝑥𝑘
𝑖 )𝑝(𝑥𝑘

𝑖 |𝑥𝑘−1
𝑖 )

𝑞(𝑥𝑘
𝑖 |𝑥𝑘−1

𝑖 ,𝑧𝑘 )
                            (6)  

where 𝑞(𝑥𝑘
𝑖 |𝑥𝑘−1

𝑖 , 𝑧𝑘 ) is called an importance density. If we 

take. 

𝑞 𝑥𝑘
𝑖  𝑥𝑘−1

𝑖 , 𝑧𝑘  = 𝑝 𝑥𝑘
𝑖  𝑥𝑘−1

𝑖                       (7) 

We obtain 

         𝑤𝑘
𝑖 ≈ 𝑤𝑘−1

𝑖  𝑝(𝑧𝑘 | 𝑥𝑘
𝑖 )                           (8) 

The state evolution model 𝑝 𝑥𝑘  𝑥𝑘−1  is used to draw the 

particles. 

 

 

 

TABLE I: LIST OF EXTRACTED FEATURES FOR FIRST AND SECOND PHM CASE STUDY. 
Index  Feature Sensor Index  Feature Sensor 

 1  RMS   

 

 

 

 

 

 

 

21-25 Strongest Frequency Energies  

 

 

 

 

 

 

 

2 Standard Deviation 26 VHF Band Energy 

3  Mean Value 27 HF Band Energy 

4 Max Value 28 MF Band Energy 

5 Min Value 29 LF Band Energy 

6-10 Quantiles 26 VHF Band Energy 

11  Skewness 27 HF Band Energy 

12  Kurtosis 28 MF Band Energy 
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13  Crest Factor  

 

 

Vertical and 

Horizontal 

Vibrations 

29 LF Band Energy  

 

 

Vertical and 

Horizontal 

Vibrations 

14 Clearance Factor 30-35 Percentages of Energy corresponding to 

the detail wavelet coefficients 

15 Shape Factor 36 

 

Percentages of Energy corresponding to 

the approximation wavelet coefficients 

16 Impulse Factor 37-66 RMS, Mean, Max, Min, Standard 

Deviation, Median of the detail wavelet 

coefficients 

17 BPFO Energy  

18  BPFI Energy 

67-71 RMS , Mean, Max, Min, Standard 

Deviation, Median of the approximation 

wavelet coefficients 

19 BSF Energy 72-107 

Inverse Hyperbolic Sine of the above 

wavelet statistical features 

108-142 Inverse Tangent sine of the above wavelet 

statistical features 

143-148 Histogram of detail coefficients 

20 FTF Energy 149-153 Cumulative Histogram of detail 

coefficients 

 

 

C. Adapting particle filter for prognostics purpose 

The prognostic process is presented in Fig. 2. 

During the learning phase, the filter works as described 

above. But at the end of this phase, when no measurement 

is available and the likelihood is no longer calculated; only 

the state 𝑥𝑘  is propagated from one stage to another using 

the evolution model [9]-[10], [13]. 

D. Integration of NFS in particle filtering 

 Linear, exponential or logarithmic analytic expressions 

are often used to model the degradation process to fit the 

given data. These expressions are first-order Markov 

models where the system state 𝑥𝑘  depends only on the 

previous state 𝑥𝑘−1 and a process noise 𝜔𝑘−1. But usually 

there is not such trivial case, as in our situation. To address 

this issue, we add a degree of complexity to the PF 

technique by proposing a neuro-fuzzy system predictor to 

fit the degradation process. The proposed NFS is a fuzzy 

logic system combining the human-like reasoning style of 

fuzzy systems with the learning and connectionist structure 

of neural networks. The modified NFS is introduced with 

the process noise to represent the dynamics of the system, 

as shown below 

𝑥𝑘 = 𝑥 𝑘 + 𝜔𝑘−1 

                            𝑥 𝑘 = 𝑔𝑘(𝑥𝑘−1)                     (9) 

Where 𝑔𝑘(𝑥𝑘−1) is a nonlinear function used by the NFS. 

The NFS consists of five layers, wherein the signal is 

processed throw, namely input layer, Membership Function 

(MF) layer, rule layer, normalized layer and output layer, 

respectively [11], [13]. 

The adopted NFS predictor is a single input-single output 

(SISO) Neuro-Fuzzy System. Its architecture is shown in 

Fig. 1. 

 
 

Fig. 1: SISO NFS predictor Architecture. 

 

 
 

Fig. 2: Particle filter framework for prognostics 

IV. EXPERIMENT SETUP 

A. PHM case study (Bearings datasets of IEEE PHM 
Challenge 2012): 

PHM challenge datasets were provided by FEMTO-ST 

Institute and are mainly composed of run-to-failure 
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vibration signals related to ball bearings from an 

experimental platform PRONOSTIA. The datasets are 

recorded at a sampling frequency of acceleration and 

temperature of 25.6 kHz and 0.1 Hz respectively. The 

experiments were stopped when amplitude of the vibration 

signal overpasses 20g limit. They provide 6 run-to-failure 

datasets in order to build prognostics models, and ask to 

estimate accurately the RUL of 11 remaining bearings. 

Further details are given in [14]. 

𝐵𝑒𝑟𝑖−𝑗  represents the bearing number 𝑗 under the load 

condition 𝑖.  
Fig. 3a and 3b show the raw vibration signals of the 

bearing 𝐵𝑒𝑟1−1 on the horizontal and vertical axis 

respectively.   

1) Feature extraction & exploring 

Following the steps of the prognostic scheme and in 

addition to the extracted features in time and frequency 

domains, features in time-frequency domain is also 

considered, using the Daubichies wavelet of 5
th

 order D5 

and 5
th

 decomposition level for the analysis of bearing 

vibration signals.  

Statistical features were performed on at different 

decomposition levels using detail coefficients, Fig. 4 is 

illustrating example. These features still show a low 

trending and present variation right before failure time 

which limits their prognostic capabilities; Fig. 4a and 4b. 

We suggest transforming the extracted features into their 

cumulative form using the formula below. 

𝑐𝑑𝑓(𝑖)  =
 𝑠𝑢𝑚(𝑑𝑎𝑡𝑎(1: 𝑖))/𝑠𝑞𝑟𝑡(𝑎𝑏𝑠(𝑠𝑢𝑚(𝑑𝑎𝑡𝑎(1: 𝑖)))); 

 

 

 

 

 

 

 

 
Fig. 3: Vibration signals of the bearing Ber1−1 - Horizontal  and 

Vertical axis. 

 

 

 

 

 

 

 

 

 

 

 

The result, Fig. 5, is better smoothed and trended 

characteristic and well adapted to the RUL prediction. 

 
Fig. 5:  Identified features for the bearing Ber1−1 

The given threshold for the training vibration, 20g, 

correspond to 37,5 on the cumulative form which is kept for 

the test phase. 

Fig. 6 shows the NFS evolution model to be integrated to 

particle filtering algorithm for RUL prediction; it represents 

with fidelity the evolution of the identified feature. 

 
Fig. 6: Results of NFS evolution model. 

 
Fig. 7: Particle filter; learning and prediction phases. 

 

Table V summarizes the results of the RUL percentiles 

prediction at different prediction times. At late prediction 

time (23010s), the proposed model underestimates the RUL 

indicating an early RUL prediction which is less penalized 

compared to early prediction time (18010s) which gives an 

overestimate of the RUL prediction, but generally these 

predictions are often very close to the real one; we deal here 

with seconds. If the results are quite convincing, the 

uncertainty of the prediction remains very high. 
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Fig.4: a) RMS vibration features of bearing Ber1−1 

b) RMS of wavelet detail coefficients of level 5 of bearing Ber1−1 
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Fig. 8: PDF RUL prediction at 18010s 

TABLE V: RESULTS OF PERCENTILES OF THE RUL AT DIFFERENT 

TIMES  

Percentiles of 

predicted RUL 

at time - in (s)  

5prct median 95prct True 

RUL 

𝐵𝑒𝑟1−3 - 18010 5975 6520 6780 5730  

𝐵𝑒𝑟1−5 - 23010 510 1210 2280 1610  

𝐵𝑒𝑟1−6 - 23010 145 1475 2415 1460 

V. PRACTICAL ASPECT OF THE APPROACH 

The flow chart of the Fig. 9 illustrate our approach to 

perform machine RUL prediction: 

A number of vibration data samples are collected from 

sensors installed on the equipment. The data is then 

transferred in buffer to be processed by the prognostic 

software. The prognostic software (implemented as 

computer program or procedure written as source code in a 

conventional programming language and presented for 

execution by the CPU as object code for instance) processes 

the received data following the steps of the approach 

described above: 

• A plurality of statistical features are extracted and 

transformed to its cumulative form to identify the advanced 

prognostic feature as health indicator.  

• After the identification of the health status of the 

equipment, the RUL with its confidence bounds is then 

predicted by propagating the trend of the health indicator 

until it reached the pre-defined threshold using the PF 

assuming the fault growth follows the proposed NFS. 

Finally, the prognostic software outputs prognostic 

information which can be further displayed on HMI. 

 

 
 

Fig. 9: Embodiment of the approach 

VI. CONCLUSION 

The prognostic feature which is used for the prediction of 

the remaining useful life (RUL) for the PHM case study is 

done by further pre-processing the extracted feature 

transforming it into its cumulative form. The identified 

feature exhibits a monotonic trend that clearly reflects the 

evolution of machine degradation. 

We have adopted the particle filtering technique for the 

prediction of the RUL with an integrated NFS predictor to 

simulate the machine fault evolution model. 

This approach was validated through a set of collected 

bearing run to failures data. 

The results of the RUL predictions are very promising, 

and need to be further confirmed with data acquired on 

different stack technologies. The challenge remaining for 

the future work is to reduce the uncertainty of the RUL 

prediction.  
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