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Abstract— In this work an adaptive neuro-control strategy is 
proposed for the stabilization of an unmanned aerial vehicle 
(UAV). The influence of the quadrotor’s mass variation and the 
wind disturbances are analyzed. Simulation results show how the 
on-line learning increases the robustness of the controller, 
reducing the effects of the changes in mass and the wind on the 
UAV altitude. 
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I. INTRODUCTION 

In recent years, new and valued applications of unmanned 
aerial vehicles have emerged in different sectors like: defenses, 
security, construction, agriculture, entertainment, shipping, etc, 
that demand the design of efficient and robust controllers for 
these and others applications. Thus, the modeling and control 
of these complex and unstable systems still motivate the 
research and the interest of the scientific community [1-3]. 

Having said that, the modeling and control of unmanned 
aerial vehicles (UAV) are not an easy job, its complexity 
comes from the randomness of the airstreams and of the 
exogenous forces, the high non-linearity of the dynamics, the 
coupling between the internal variables, the uncertainty of the 
measurements… These factors make the techniques based on 
artificial intelligence a promising approach for the 
identification and the control of these systems. 

These techniques are especially interesting when the 
model’s parameters vary while the system is working. For 
example, the variations suffered by the total mass of the 
system when the vehicles are used in logistic tasks, since the 
mass depends on the packages which are shipped. 

There are some studies where neural networks have been 
applied to model these systems [4, 5] and to control them [6-
8]. It is also possible to find examples of the application of 
these intelligent techniques to model other complex non-linear 
systems [9], as for example marine vehicles [10]. 

In this work an adaptive neuro-control strategy is proposed 
to stabilize an unmanned aerial vehicle. The influence of the 
mass and the external disturbances is studied. The results 
show how the online learning increases the robustness of the 
controller, by reducing the effects of the changes in mass and 
the external disturbances on the height. 

The paper is organized as follows. In section 2 the 
equations which describe the dynamic behavior of the system 
are presented. Section 3 describes the adaptive neuro-control 
strategy that has been implemented. Simulation results are 
presented and discussed in section 4. The document ends with 
the conclusions and future works. 

II. SYSTEM DESCRIPTION 

A quadrotor vehicle is composed by four perpendicular 
arms, each one with a motor and a propeller (figure 1). The 
four motors drive the lift and direction control. 

 

 
Fig. 1  Example of quadrotor vehicle 

 
The system is based on two couples of propellers which are 

opposed each other (1,3) y (2,4) (Figure 2). 
 

 
Fig. 2  UAV’s coordinate system 

In order to ensure the system is balanced, one pair of 
motors turns clockwise while the other one turns 
counterclockwise. The increment of the speed of rotor 3 
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respect to rotor 1 produces a positive pitch (ߠ ൐ 0ሻ, while the 
increment of the speed of rotor 4 regarding rotor 2 produces a 
positive roll (߶ ൐ 0ሻ. 

The absolute position is described by three coordinates, 
ሺݔ, ,ݕ ,߶ሻ and the attitude by the three Euler’s angles ሺݖ ,ߠ ߰ሻ, 
under the conditions: ሺെߨ ൑  ߰ ൏ ሻߨ  for the yaw angle, 
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2
൑ ߶ ൏

ߨ

2
ቁ for the roll angle and ሺ

గ

ଶ
൑ ߠ ൏

గ

ଶ
ሻ for the pitch. 

By using the Newton-Euler’s method, the angular dynamics 
of the system is represented as follows: 
 

 ߬ ൌ ܬ ሶ߱ ൅ ߱ ൈ  (1) ߱ܬ

ܬ  ൌ ቌ
௫ܫ 0 0
0 ௬ܫ 0
0 0 ௭ܫ

ቍ (2) 

 
Where ߬ is a vector of torques in the three axis, ܬ  is the 

inertia tensor, ߱  is a vector of angular velocities and ൈ 
represents the vectorial product. 

The translational dynamics is given by: 
 

ሶݒ݉  ൌ ܴܶ െ ݉݃݁ଷ (3) 
 
Where ݉  is the mass of the quadrotor, ܴ  is the rotation 

matrix, ݃  is the gravitational acceleration, ܶ  is a vector of 
forces and ݁3 ൌ ሾ0,0,1ሿܶ is a unit vector which describes the 
rotor orientation. 

The vectors ߬ and ܶ are a function of the velocities of the 
propellers: 
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In the equations 4 and 5, ܾ is the thrust coefficient, ݀ is the 

drag coefficient and ݈ is the longitude of each arm; Ω1, …,Ω4 
are the velocities of the rotors 1 to 4, respectively. 

In order to simplify the calculations, instead of using the 
speed of the rotors it is possible to define a set of control 
signals 1ݑ, ,2ݑ  :as follows 4ݑ y 3ݑ
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This matrix may be inverted, and then it is possible to 

generate speed references for the rotors from a set of control 
signals. 

From equations 1 to 6, the following system of equations is 
derived: 

 
߶ሷ ൌ ሶߠ ሶ߰ ሺܫ௬ െ ௭ሻܫ ௫ܫ ൅⁄ ሺ݈ܾ ⁄ଶݑ௫ሻܫ  (7) 
ሷߠ ൌ ߶ሶ ሶ߰ ሺܫ௭ െ ௫ሻܫ ௬ܫ ൅⁄ ሺ݈ܾ ⁄ଷݑ௬ሻܫ  (8) 

ሷ߰ ൌ ߶ሶ ሶߠ ሺܫ௫ െ ௬ሻܫ ௭ܫ ൅⁄ ሺ݀ ⁄ସݑ௭ሻܫ  (9) 
ሷܺ ൌ െሺݏ݋ܿߠ݊݅ݏ߶ሻ ሺܾ ݉ሻݑଵ⁄  (10) 
ሷܻ ൌ ሺ݊݅ݏ߶ሻ ሺܾ ݉ሻݑଵ⁄  (11) 
ሷܼ ൌ െ݃ ൅ ሺܿݏ݋ܿߠݏ݋߶ሻ ሺܾ ݉ሻݑଵ⁄  (12) 

 
The constants used during the simulations are listed in 

Table 1, and were extracted from [11]. 

TABLE I 
CONSTANTS OF THE MODEL 

Parameter Description Value 
݈ Longitude of an arm 0.232 m 

݉ Mass of the quadrotor 0.52 Kg 

݀ Drag coefficient 7.5e-7 N m s2 

ܾ Thrust coefficient 3.13e-5 N s2 
ݔܫ Inertia in X 6.228e-3 Kg m2 
ݕܫ Inertia in Y 6.225e-3 Kg m2 
ݖܫ Inertia in Z 1.121e-2 Kg m2 

௔௜௥ߩ  Density of the air 1.2 Kg/ m3 

 Area in the direction ܣ
of the wind 

0.0186 m2 

݀ܥ Wind Drag coefficient 1 

III. DESCRIPTION OF THE NEURO-CONTROLLER 

A. Control Strategy 

There are different control strategies with neural networks. 
In our case, a variant of the generalized learning algorithm 
(GLA) has been used. The modification consists of the 
refinement of the network during the execution of the 
controller by adaptive learning [11]. 

The first step is the application of the GLA algorithm to off 
line training the neural network in order to identify the inverse 
dynamic of the plant (Figure 3). 
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Fig. 3  Off-line training to identify the plant’s inversed dynamic 

 
The neural network that will be used as controller should be 

the inverted dynamic of the plant; therefore, from the desired 
response (reference signal, r ) the control signal u must be 
generated, that will lead the real system’s output to the 
reference signal. 

Once the network has been off-line trained, it is placed in 
cascade connection with the plant. Then the configuration of 



the network is on-line refined. In order to do this, during each 
control interval two processes are sequentially applied to the 
network: 
1. Simulation: the output u is generated from the input 

reference and it set as the input of the plant. (Figure 4, 
switch in the upper position). 

2. Learning: From the current and past outputs of the plant 
the neural network is trained to generate the control 
output u (Figure 4, switch in the lower position). 

 
Fig. 4  Control phase +on-line learning 

B. Altitude Control 

In order to test the validity of this technique we have 
focused on the control of altitude variable. UAV are normally 
provided with accelerometers, so it is assumed that the 
acceleration in the z-axis (  is available. 

The network must be able to simulate the control signal  
by using acceleration measurements. The set of input data of 
the network is taken each time instant t, with the value of the 
control signal  in the 10 past time samples  
where i = 1…10, and  is the sampling time, and the 
acceleration in the Z-axis at the current time is (t). The set of 
output data has been generated with the value of the control 
signal  at the current time (t). The sampling time  used 
in the experiments is 10 ms. 

In order to control the altitude Z, a PID controller, which 
generates the references of the acceleration in the z-axis, is 
added. 

 
Fig. 5  Proposed altitude controller 

 
A train of pulses with variable amplitude is generated 

during the off-line phase to train the network. The duration of 
the train of pulses is 2s. Before the training, the input and 
output sets are normalized to adjust the values to the range 0-1. 

C. Neural Network 

During this work, the selected network has been a 
multilayer perceptron (MLP). The MLP is an artificial neural 
network composed by an input layer, a set of hidden layers 
and an output layer. Each layer is composed by a set of nodes; 
each node in one layer connects with a certain weight to every 

node in the following layer. The figure 6 depicts the structure 
of an example of a MLP network. 

 
Fig. 6  Structure of a MLP 

 
The nodes in the hidden layers and the output layer are 

based on the perceptron. In the perceptron the inputs  
coming from the previous layers are firstly weighted summed, 
then the result is incremented by a threshold, and the outcome 
is introduced in an activation function. The output of the 
activation function feeds the inputs of the subsequent layers. 
The equation 13 represents this process. 

 
  (13) 

 
Where  are the weights of the inputs,  is the threshold 

and   is the activation function. Typically the activation 
functions most used are the Log-sigmoid transfer function, the 
linear transfer function and the Hyperbolic tangent sigmoid 
transfer function. 

The figure 7depicts the structure of the perceptron 
 

 
Fig. 7 Structure of the perceptron 

 
In our case the network has been configured with 5 hidden 

layers. Levenberg-Marquardt with  has been used 
as optimization algorithm. 

 



IV. RESULTS 

Positive results have been obtained by simulation with the 
software Matlab/Simulink. The duration of each simulation 
has been 15 seconds. The controller has been off-line trained 
for the first 2 seconds, and the on-line learning algorithm has 
been then applied for the remaining 13 seconds by introducing 
the signal Zref as reference to the controller. 

The controller has been trained from the beginning up to 
t=2 s. The control signals used to off-line train the network 
produce changes in the altitude during this interval. The 
control phase begins in t=2, when the Z reference is set to 5, 
and then acceleration references are continuously generated to 
stabilize the Z over this value. During the simulation the 
signals acelRef and acelZ match better over time, therefore the 
controller is able to stabilize the altitude to the desired value. 

These results could be extended to control the Euler’s 
angles for path following. 

A. Robustness when varying the mass 

In this experiment the effect of the variation of the mass is 
simulated. The mass of the quadrotor is duplicated at t=4. The 
error at the output of the neural network worsens the system 
response. Indeed, the stationary error when on-line learning is 
not applied is relevant. 

B. Robustness with wind disturbances 

A new term ( ݐݏ݅݀ ) is added to equation 12 to model 
external disturbances. 
 

ሷܼ ൌ െ݀݅ݐݏ െ ݃ ൅ ሺܿݏ݋ܿߠݏ݋߶ሻ ሺܾ ݉ሻݑଵ⁄  (14) 
 
The disturbance represents the variation of the acceleration 

caused by the external wind in the movement direction [12]: 
 

ݐݏ݅݀ ൌ ௪ሻݒሺ݊݃ݏ · ௔௜௥ߩ · ܣ · ݀ܥ · ൫ ሶܼ െ ௪൯ݒ
ଶ

/ሺ2݉ሻ (15) 
 
Where ݒ௪ is the wind speed, ߩ௔௜௥ is the air density, ܣ is the 

area of the quadrotor, ݀ܥ is the drag coefficient respect to the 
wind, ሶܼ  is the velocity in the z-axis and ݊݃ݏ denotes the sign 
function. 

In this experiment, from t=4 the wind speed is simulated by 
a step with Gaussian noise added. The SNR between the 
average wind and the noise is 10dB. The average wind is 12 
m/s. This value matches to number 6 in the Beaufort’s scale 
(Strong Breeze). 

Likewise in the previous experiment, the controller without 
on-line learning cannot react to this disturbance, but in this 
case the stationary error is not so big. 

V. CONCLUSIONS AND FUTURE WORKS 

UAVs are complex systems to model and control. The 
complexity comes from their strong non-linear dynamics and 
also from external disturbances. 

In this work an adaptive neuro-controller is proposed. The 
proposal is validated by the simulation of the altitude control 
of an UAV. The results show how the online learning of the 

network increases the robustness of the controller, by reducing 
the effects of changes in mass and wind disturbances. 

Among others possible future lines we may highlight: the 
control of the complete system (Euler’s angles) and the study 
of the influence of the neural network topology on the control 
performance. 
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