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Abstract— This paper deals with thermal regulation of a CHP
system (Combined Heat and Power also known as Cogeneration
system). For this kind of system we present a dynamic model
that describes the heat transfer between its main components.
We show that such model inherits the positivity feature from
the underlying thermal system. The regulation purpose is to
track a desired temperature for the hot water in the secondary
water circuit. In order to improve the decay rate of the thermal
system, a stability analysis is provided by taking into account
the system’s flow rates. Based on positivity consideration, we
show that the proposed regulation problem can be solved via
an adequate Linear Programming (LP) formulation.

Keywords: CHP system, positive systems, thermal systems,
linear programming.

I. INTRODUCTION

Regulation of fluid outlet temperature at desired values is of
great importance in many domestic and industrial applica-
tions. This can be achieved by transporting a fluid through
ducts to heat exchangers with adequate flow rates. Modeling
and control of thermal systems is a topic of great practical
importance. Many different methods to control temperature
and heat in a building have been proposed [14], [2], [3], [6],
[7], [15]. Our treatment for a thermal CHP system is mainly
based on the theory of positive systems (whose states are
nonnegative whenever its initial condition are nonnegative).
For a wide overview on positive systems, see for instance,
[5], [9], [8].
This paper treats the thermal regulation of a Combined
Heat and Power (CHP) system also known as Cogeneration
system. For such system a dynamic model is proposed which
describes the heat transfer between the main components: the
Stirling engine, the primary water circuit and the secondary
water circuit. Such model inherits the positivity of the
underlying thermal system. The aim is to track a desired
temperature for the hot water in the secondary water circuit.
For this purpose, a positivity-based methodology is provided
in order to improve the decay rate of the system. First,
a stability analysis is performed by taking into account
some crucial components of the system, that is, its tunable
parameters represented by the flow rates. Such important
parameters of a CHP system may not all be controlled, but
rather can be a priori tuned in order to achieve a good
tracking performance. We show that this tuning problem
can be solved via an adequate LP formulation. Furthermore,
based on positivity consideration we show how the fuel flow
of the Stirling engine can be selected in order to achieve a
desired temperature reference.
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This paper is organized as follows: Section II presents a state-
space thermal model of a CHP system. In section III, we
propose a positivity framework for CHP system’s stability. In
section IV, we treat the stability performance and the thermal
regulation by taking into account the flow rates as tunable
parameters. Finally, a characterization of the full physical
thermal model is provided in Appendix.
Notations Rn×m denotes the set of real matrices of size n×m
and Rn×m

+ denotes the set of real matrices with nonnegative
entries. For a real matrix or a vector, M > 0 means that
its components are positive, and M ≥ 0 means that its
components are nonnegative. MT denotes the transpose of
M.

II. THERMAL CHP SYSTEM AND PROBLEM
FORMULATION

We consider a state-space thermal model which characterizes
a CHP system as depicted in Figure 1.
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Fig. 1. Structure of a CHP unit with a Stirling engine

The thermal model of a CHP system is elaborated by taking
into account the overall steady-state energy balance: energy
balance in the engine, energy balance at the main exchanger
for cooling water circuit and energy transport equation for
cold water and hot water (more details on the physical
model are given in the Apprendix). The state variables are:
the average engine temperature Teng, the outlet cold water
temperature Tcw,o, the temperature of the inlet cold water
Tcw,i and the outlet temperature of the hot water Thw,o. The
system’s manipulated input is the fuel flow rate feng entering
the combustion chamber in the Stirling engine. The structure
of the overall state-space thermal model is given by{

ẋ(t) = Ax(t)+Bu(t)+d(t)
y(t) =Cx(t) (1)

where x ∈ R4 is the state and y ∈ R is the output measure-
ments such that x = [Teng Tcw,o Tcw,i Thw,o]

T , y = Thw,o. The
control input u represents the fuel flow rate feng in the engine
and d ∈ R4 represents a mesurable exogenous signal. The
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matrices A ∈ R4×4, B ∈ R4 C ∈ R1×4 and d ∈ R4 have the
following structure

A =


−α1 α2 0 0
α3 −α4 fcw−α5 α4 fcw 0
0 α4 fcw −α4 fcw−α5 0
0 α6 0 −α7 fhw−α6

 ,
(2)

BT =
[
β 0 0 0 0

]
, C =

[
0 0 0 1

]
,

dT =
[
γ1 0 γ2 γ3

]
,

where all the involved physical and thermal parameters are
positive αi > 0, fcw > 0, fhw > 0, β > 0 and γi > 0 . The
parameters fcw, fhw represent respectively the flow rates
of the cold and hot water. The control input u = feng is
nonnegative where feng > 0 is the fuel flow rate.
For the thermal regulation purpose, the flow rates parameters
of the thermal model (1) have to be tuned. Thereby, allowing
considerable freedom in the assignment of a decay rate of the
system. Indeed, this primordial concern for assigning reason-
able values to some manipulated parameters of the thermal
model can increase tracking performance. Henceforth, our
attempt is to provide satisfactory answers to the following
questions:
• How can one tune the flow rates fcw, fhw in order to

increase the decay rate of system (1)?
• How can one derive a nonnegative control (fuel flow

rate) to track a desired temperature for the output y =
Cx = Thw,o depending on the tuned flow rates fcw, fhw?

Keeping in mind that the underlying thermal model (1)
is positive by nature, our forthcoming treatment will be
performed within a positivity-framework. To this end, some
key role tools and preliminary results will be introduced.

III. POSITIVITY AND STABILITY

First, fundamental stability and positivity properties related
to positive systems are presented.

Consider the following linear system

ẋ(t) = Mx(t), x(0) = x0 ∈ Rn
+, (3)

where M ∈ Rn×n is a constant matrix.
Definition 3.1: System (3) is said to be positive if its trajec-
tories are nonnegative for all nonnegative initial conditions.
Definition 3.2: A real matrix M is called a Metzler matrix
if its off-diagonal entries are nonnegative (mi j ≥ 0, i 6= j).
Note that the dynamic matrix A of the thermal system (1)
is Metzler. Then, the internal positivity of such system (with
u = 0, d = 0) can be easily checked based on the following
result (see [11]).
Lemma 3.3: System (3) is positive if and only if M is a
Metzler matrix.
In the sequel, we shall use the following stability result which
has been established in different contexts, see for instance
[11], [13], [1].

Lemma 3.4: For any Metzler matrix M, we have that etM ≥
0 for all t ≥ 0. Moreover, the following statements are
equivalent
(i) M is Hurwitz.

(ii) There exists a positive vector λ > 0 such that Mλ < 0.
The following comparison result is needed for our next result.
Lemma 3.5: Consider the following system

ż(t) = Mz(t)+ f (t), z(0) = z0 ∈ Rn
+, (4)

where M is a Metzler matrix. If f (t)≥ 0 for all t ≥ 0, then
the states of system (4) is nonnegative z(t)≥ 0 for all t ≥ 0.
Moreover, z(t) is bounded from below z(t) ≥ z̃(t) for all
t ≥ 0, where z̃(t) is the solution to the differential equation

˙̃z = Mz̃, z̃(0) = z0.
Proof: This can be shown by using the fact that etM is

nonnegative for all t ≥ 0 (see Lemma 3.4) and by using the
following expression of the solution to the equation (4)

z(t) = etMz(0)+
∫ t

0
e(t−s)M f (s)ds.

Based on the previous result some drawbacks related to
improving stability performance for system (1) through the
use of nonnegative control are first revealed.
Proposition 3.6: Any kind of nonnegative control cannot
increase the decay rate of the thermal system (1).

Proof: First recall that the dynamic matrix A of the
thermal system (1) is Metzler. Then, the argument line
can be deduced from the comparison result of Lemma 3.5.
Effectively, let xu(t) be the trajectory of system (1) under a
nonnegative control u(t)≥ 0 and x0(t) be the trajectory with
zero input u = 0. Since B≥ 0 then by Lemma 3.5 we have
that xu(t)≥ x0(t) for all t ≥ 0. Consequently, the decay rate
of xu(t) is the same or less than the decay rate of x0(t).

IV. ENHANCED PERFORMANCE

In this part, stability with a prescribed decay rate for system
(1) is investigated under tuned flow rates.
Recall that we have shown previously that any kind of
nonnegative control cannot increase the decay rate of the
thermal system. As a remedy, the flow rates fcw, fhw can be
tuned in order to improve the stability performance.

In the sequel, the following Lemma will play a technical key
role.
Lemma 4.1: For any given matrix M, the following state-
ments are equivalent
(i) There exists a positive vector γ > 0 such that Mγ < 0.

(ii) There exists a positive vector λ = [λ1, . . . ,λn]
T > 0 such

that Mλ < 0 and λi 6= λ j for any i 6= j.
Proof: Since we have strict inequality Mγ < 0, the

equivalence can be shown by using a small perturbation of
the components of the vector γ > 0 in the statement (i).
Now, we are in a place to state the following result.
Theorem 4.2: Let A ∈ R4×4 be the dynamic matrix of the
thermal system (1) defined by (2). Then there exist bounded
positive flow rates fcw ≤ fcw ≤ fcw, fhw ≤ fhw ≤ fhw (where

User1
Typewritten Text
Copyright IPCO-2018
ISSN 2356-5608

User1
Typewritten Text
Conférence Internationale en Automatique & Traitement de Signal (ATS-2018) 
Proceedings of Engineering and Technology – PET
Vol.36 pp.17-21



fcw, fcw, fhw and fhw are prescribed bounds) such that the
real part of the eigenvalues of A are less that −r < 0 (where
r is a prescribed decay rate); if and only if either one of the
following LP problems ((5) or (6)) is feasible in the scalar
variables λ1, λ2, λ3, λ4 and y1, y2




r−α1 α2 0 0 0 0

α3 r−α5 0 0 α4 0
0 0 r−α5 0 α4 0
0 −α6 0 r−α6 0 −α7




λ1
λ2
λ3
λ4
y1
y2

< 0,

λ1 > 0, λ2 > 0, λ3 > 0, λ4 > 0,
λ3−λ2 > 0,
y1 > 0, y2 > 0,
fcw(λ3−λ2)≤ y1 ≤ fcw(λ3−λ2), fhwλ4 ≤ y2 ≤ fhwλ4.

(5)




r−α1 α2 0 0 0 0

α3 r−α5 0 0 α4 0
0 0 r−α5 0 α4 0
0 −α6 0 r−α6 0 −α7




λ1
λ2
λ3
λ4
y1
y2

< 0,

λ1 > 0, λ2 > 0, λ3 > 0, λ4 > 0,
λ3−λ2 < 0,
y1 < 0, y2 > 0,
fcw(λ3−λ2)≤ y1 ≤ fcw(λ3−λ2), fhwλ4 ≤ y2 ≤ fhwλ4.

(6)
Moreover, the desired flow rate values can be recovered from
any feasible LP problem (5) or (6) as

fcw = (λ3−λ2)
−1y1 and fhw = λ

−1
4 y2 (7)

Proof: The necessity part can be proved as follows.
Assume that there exist bounded positive flow rates fcw ≤
fcw ≤ fcw, fhw ≤ fhw ≤ fhw such that the real part of the
eigenvalues of the matrix A defined by (2) are less than −r <
0, then by Lemma 3.4 and Lemma 4.1, this is equivalent to
the existence of a positive vector λ = [λ1, . . . ,λn]

T > 0 such
that (A+rI)λ < 0 with λ2 6= λ3. Thus, two cases can happen
λ2 > λ3 or λ2 < λ3.
If λ2 > λ3, then by tacking the change of variable y1 =
fcw(λ3−λ2)

−1 and y2 = fhwλ
−1
4 we get by some manipula-

tions and rearrangement the LP problem (5) Also, the case
λ2 < λ3 with this change of variables y1 = fcw(λ3− λ2)

−1

and y2 = fhwλ
−1
4 leads to the LP problem (6).

The sufficiency part follows the same line of argument.

Next, the regulation problem under consideration, is to
determine a nonnegative control signal u ≥ 0 such that the
outlet hot water temperature y =Cx = Thw,o tracks a desired
constant reference yre f .
Assume that the exogenous signal d(t) is measurable and
goes to a steady value d∗ (which is the case for the termal
system). Then, a simple regulation strategy can be based on
the following feed-forward control which will be generated
based upon adequate hot and cold water flows.

u(t) =−
yre f +CA−1d(t)

CA−1B
. (8)

If the matrix A is stable, then the system goes to a steady-
state x∗, u∗ at the equilibrium:

Ax∗+Bu∗+d∗ = 0, (9)

As u∗=− yre f +CA−1d∗

CA−1B , by multiplying (9) by the matrix CA−1

we can deduce easily that Cx∗ = yre f .
The question is how to ensure that the tracking control
law (8) is nonnegative. This nonnegativity condition on the
control is a real physical constraint since the fuel flow rate
must be a nonnegative physical quantity. Note that in general
the design of a negative is a hard problem.
In the sequel, we shall use the following general result with
connection to Metzler matrices that are Hurwitz (see for
instance [4]).
Lemma 4.3: Let M be a Metzler matrix, then the following
statements are equivalent
(i) M is Hurwitz.

(ii) M−1 ≤ 0.
Now, the following result provides linear constraints condi-
tions for the nonnegativity of the feed-forward control (8)
explicitly in terms of the data matrices A,B and C. Later,
such result can be combined with the previous stability
performance result of Theorem 4.2 in order to increase the
decay rate of the system.
Theorem 4.4: Let A ∈ Rn×n be a Metzler and Hurwitz ma-
trix, B∈Rn, C∈R1×n such that B≥ 0, C≥ 0 and CA−1B 6= 0.
Assume that d(t) ∈Rn is a bounded vector d ≤ d(t)≤ d for
all t ≥ 0 with given constant vectors d ≥ 0,d ≥ 0. Then, the
control signal u(t) =− yre f +CA−1d(t)

CA−1B is positive and bounded
0 ≤ u(t) ≤ u for all t ≥ 0 with prescribed constant upper
bound u > 0, if there exists a vector λ ∈ Rn satisfying the
following linear constraints Aλ ≤−d

Aλ ≥−uB−d
Cλ = yre f

(10)

Proof: First, note that the statement: A is a Metzler and
Hurwitz matrix implies by Lemma 4.3 that A−1 ≤ 0. This
implies CA−1B < 0 since B≥ 0, C≥ 0. Thus, in order to see
that u ≥ 0 it suffices to show that yre f +CA−1d(t) ≥ 0 for
all t ≥ 0. Hence, by using the condition Aλ ≤−d which by
simple manipulation yields −Cλ ≤ CA−1d̄ which by using
the fact that Cλ = yre f , implies yre f ≤CA−1d̄. Consequently,
by tacking into account that d(t)≤ d which leads to CA−1d≤
CA−1d(t) (multiply by CA−1 ≤ 0). Hence, we can see that
yre f +CA−1d(t)≥ yre f +CA−1d ≥ 0 for all t ≥ 0.
Next, let us prove that u≤ u which is equivalent to −yre f ≥
CA−1(uB+ d(t)) (due to the fact that CA−1B < 0 ). Since
d ≤ d(t) it holds CA−1d ≥CA−1d(t) (multiply by CA−1 ≤
0) and so that we only need to show that the inequality
−yre f ≥ CA−1(uB+ d) holds. Let λ satisfies the condition
Aλ ≥−uB−d which by using the fact that A−1 ≤ 0 implies
−Cλ ≥ CA−1(uB + d). By tacking into account the other
condition Cλ = yre f we obtain −yre f ≥ CA−1(uB + d) ≥
CA−1(uB+d(t) and the proof is complete.
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Next, we shall show how the previous result can be applied to
the thermal system (1). Note that in order to preserve stability
with a given decay rate and recover the associated flow rates,
the linear inequality condition Aλ ≤ −d is replaced with
(A+ rI)λ ≤−d which implies by Lemma 3.4 that A+ rI is
a Hurwitz matrix.
Now, the following result presents LP conditions for the
regulation problem. Such conditions are numerically reliable
and easily checkable by using linear programming.
Corollary 4.5: Consider the thermal system (1) with
bounded exogenous signal d ≤ d(t) ≤ d for all t ≥ 0 with
given constant vectors d,d ∈ Rn

+. If either one of the fol-
lowing LP problems ((11) or (12)) is feasible in the scalar
variables λ1, λ2, λ3, λ4 and y1, y2

A
[
λ1 λ2 λ3 λ4 y1 y2

]T ≤−d,
A
[
λ1 λ2 λ3 λ4 y1 y2

]T ≥−uB−d,
C
[
λ1 λ2 λ3 λ4

]T
= yre f ,

λ1 > 0, λ2 > 0, λ3 > 0, λ4 > 0,
λ3−λ2 > 0,
y1 > 0, y2 > 0,
fcw(λ3−λ2)≤ y1 ≤ fcw(λ3−λ2), fhwλ4 ≤ y2 ≤ fhwλ4.

(11)



A
[
λ1 λ2 λ3 λ4 y1 y2

]T ≤−d,
A
[
λ1 λ2 λ3 λ4 y1 y2

]T ≥−uB−d,
C
[
λ1 λ2 λ3 λ4

]T
= yre f ,

λ1 > 0, λ2 > 0, λ3 > 0, λ4 > 0,
λ3−λ2 < 0,
y1 < 0, y2 > 0,
fcw(λ3−λ2)≤ y1 ≤ fcw(λ3−λ2), fhwλ4 ≤ y2 ≤ fhwλ4.

(12)
where the matrix A is given by

A :=


r−α1 α2 0 0 0 0

α3 r−α5 0 0 α4 0
0 0 r−α5 0 α4 0
0 −α6 0 r−α6 0 −α7

 ,
fcw, fcw, fhw, fhw and ū > 0 are prescribed positive bounds
and r > 0 is a desired decay rate.
Then, the real part of the eigenvalues of the matrix A (defined
by (2)) are less that −r < 0 with the flow rates recovered
from any feasible LP problem (11) or (12) by

fcw = (λ3−λ2)
−1y1 and fhw = λ

−1
4 y2; (13)

and such that fcw ≤ fcw ≤ fcw, fhw ≤ fhw ≤ fhw. Moreover,
if CA−1B 6= 0, then the control feed-forward signal u(t) =

− yre f +CA−1d(t)
CA−1B is positive and satisfies 0 ≤ u(t) ≤ ū for all

t ≥ 0.
Proof: The proof is straightforward from Theorem 4.4

and follows the same line of argument as for Theorem 4.2.

Remark 4.6: It is easy to achieve an optimum fuel con-
sumption by minimizing the upper bound u over the linear
constraints (11) or (12).

V. CONCLUSION

In this paper, we have introduced a methodology for the
regulation of a CHP thermal system based on positivity
framework. The proposed model is parameterized by some
tunable parameters: the flow rates which can be fixed ade-
quately in order to increase the decay rate of the thermal
system. Furthermore, we have shown how a nonnegative
feed-forward control can be designed in order to achieve
a desired temperature for the outlet hot water temperature.

APPENDIX: PHYSICAL CHP TERMAL MODEL

This section presents a state-space model which describes
a thermal CHP system based on its physical and thermal
characteristics.
A CHP system contains an external heat source (boiler), a
Stirling engine, a generator and a heat exchanger in order to
recover the produced heat. Its basic architecture is shown in
Figure 1. The heat source is typically a boiler which can be
powered by various types of fuel.
By following [10], the engine’s steady-state thermal perfor-
mance is related to the rate of steady-state heat production
Pq that is characterized by

Pq = ηqLHVf uelṁ f uel (14)

where ηq is the engine’s steady-state thermal efficiency. The
quantity ṁ f uel is the fuel flow rate and LHVf uel is the fuel
lower heating value.
As stated in [10], the thermal energy stored within the engine
is characterized by using an aggregate thermal capacitance
and an equivalent average engine temperature. The thermal
energy balance for the engine and the main exchanger
(cooling water circuit) is given by the following equations

[MC]eng
dTeng

dt
= Pq− Q̇hx− Q̇loss (15)

[MC]cw
dTcw,o

dt
= [ṁcp]cw(Tcw,i−Tcw,o)+ Q̇hx (16)

where Teng is the engine temperature, Tcw,i is the inlet cooling
water temperature, Tcw,o is the outlet exit temperature of the
encapsulated cooling water. [MC]eng is the engine’s thermal
capacitance, [MC]cw is the thermal capacitance of the encap-
sulated cooling water and heat exchanger shell, [ṁcp] is the
thermal capacity flow rate associated with the cooling water.
The other quantities Q̇hx and Q̇loss represent, respectively, the
rate of heat transfer to the cooling water and the rate of heat
loss from the system to the surroundings. These quantities
are proportional to the temperatures difference as follows{

Q̇hx =Uahx(Teng−Tcw,o)
Q̇loss =Uap(Teng−Ts)

(17)

where Ts is the surroundings temperature, Uahx is the overall
thermal conductance between the engine and cooling water,
and Uap is the effective thermal conductance between the
engine and the surroundings.
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Using equations (17), the engine and cooling water energy
balance equations ((15) and (16)) can be reexpressed as

[MC]eng
dTeng

dt
= Pq−Uahx(Teng−Tcw,o)−Uap(Teng−Ts)

(18)

[MC]cw
dTcw,o

dt
= [ṁcp]cw(Tcw,i−Tcw,o)+Uap(Teng−Ts).

(19)
In the secondary circuit, the energy transport equations for
cold and hot water are

[MC]cw
dTcw,i

dt
= [ṁcp]cw(Tcw,o−Tcw,i)+Uahxs(Thw,i−Tcw,i)

(20)

[MC]hw
dThw,o

dt
= [ṁcp]hw(Thw,i−Thw,o)+Uahxs(Tcw,o−Thw,o)

(21)
where Thw,i is the temperature of the inlet hot water in
secondary circuit, Thw,o is the outlet temperature of the
encapsulated cooling water, Tcw,i is the inlet temperature of
the cooling water, UAhxs is the overall thermal conductance
between the cooling water and heating water, [MC]hw is the
thermal capacitance of the encapsulated heat water and heat
exchanger shell and [ṁcp] is the thermal capacity flow rate
of the cooling water.
By gathering all the previous thermal balance equations one
can obtain the following CHP thermal model

Ṫeng = 1
[MC]eng

(ṁ f uelLHV −Uahx(Teng−Tcw,o)−Uap(Teng−Ts))

Ṫcw,o = 1
[MC]cw

([ṁcp]cw(Tcw,i−Tcw,o)+Uap(Teng−Ts))

Ṫcw,i = 1
[MC]cw

([ṁcp]cw(Tcw,o−Tcw,i)+Uahxs(Thw,i−Tcw,i))

Ṫhw,o = 1
[MC]hw

([ṁcp]hw(Thw,i−Thw,o)+Uahxs(Tcw,o−Thw,o))

(22)
By defining x = [Teng Tcw,o Tcw,i Thw,o]

T as state variable,
u = ṁ f uel as control input and y = Thw,o as output, then a
state-space thermal model{

ẋ = Ax+Bu+d
y =Cx (23)

can be characterized by

A =


−Uahxs−Uap

[MC]eng
0 Uahxs

[MC]eng
0

Uahxs
[MC]cw

−[ṁcp ]cw−Uahxs
[MC]cw

[ṁcp ]cw
[MC]cw

0

0 [ṁcp ]cw
[MC]cw

−[ṁcp]cw−Uahxs
[MC]cw

0

0 Uahxs
[MC]hw

0 −[ṁcp ]hw−Uahxs
[MC]hw


(24)

B =
[

ηqLHV f uel
[MC]eng

0 0 0
]T

(25)

d =
[

UapTs
[MC]eng

0
UahxsThw,i
[MC]cw

[ṁcp ]Thw,i
[MC]hw

]T
(26)

C = [0 0 0 1] (27)
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