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Abstract — This paper is interested in the problem of H-

infinity control with D-stability constraint for uncertain 

continuous-time repetitive systems with external disturbances. 

The main objective is the design of a control law, such that the 

system closed-loop poles are placed within a particular region of 

the complex plane for all admissible uncertainties. All of the 

obtained conditions are formulated in the form of linear matrix 

inequalities and solutions gives the agreed controller gains. 

Finally, a numerical example is given to illustrate the 

effectiveness of the proposed approach. 
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I.  INTRODUCTION 

In engineering practice, repetitive processes are very common 

and are usually encountered in many industrial applications 

such as power supply systems [1-2], robotic manipulators [3], 

CD tracking [4], computer disk drives [5-6], etc. In those 

applications, the control systems are usually desired tracking 

or rejecting periodic exogenous signals with high control 

precision.  

The repetitive control was first presented by Inoue et al. and 

applied to the control of a contouring servo system and a 

power supply for a proton synchrotron [7-8]. After that, it has 

been applied to many problems. The repetitive control affords 

a successfully practicable solution and that is a control scheme 

applied to systems that must cancel error, track periodic 

reference signals or reject periodic disturbances. 

Referring to offered Wu et al. [9-13], some design methods of 

repetitive control system for a class of linear system based on 

two-dimensional continuous/discrete hybrid model are 

presented. The problem for the design repetitive controller is 

converted in a problem for a continuous-discrete two-

dimensional system. After that, this problem is solved by 

combing two-dimensional Lyapunov theory with linear matrix 

inequalities approach. 

In practice, the influence of external disturbances and 

uncertainties in the plant must be strictly considered when the 

repetitive controller is applied to real systems. In many cases, 

those parameters cause instability in the control system. The 

stability problem with the uncertainties is named robust 

stability problem. Yamada and al. [14-18] were proposed 

some design methods for repetitive control systems with 

considering disturbances and uncertainties.  

In robust control system, stability of the closed-loop system 

makes the minimum specification. Sometimes, owing to bad 

transient responses in many applications or real physical 

systems, the system dynamic features do not make the desired 

goals such as transient oscillations, the rise time, the settling 

time, etc. 

A satisfying performances can be achieved by placing the 

closed-loop pole to in an appropriate region of the complex 

plane. Enforcing all poles of a system in a specified region is 

named D-stability problem. 

The main contribution of this paper is to study the problem of 

H-infinity control with D-stability constraint for uncertain 

continuous-time repetitive systems with external disturbances 

for all admissible uncertainties. In the first part, we will prove 

an equivalence between a two-dimensional control system and 

a repetitive control scheme such that study of convergence and 

stability properties. In the second part, all of the obtained 

conditions are formulated in the form of linear matrix 

inequalities and solutions gives the agreed controller gains. 

Finally, an example shows the efficiency of the proposed 

approach will be presented. 

II. PROBLEM FORMULATION AND PRELIMINARIES 

Consider the uncertain linear system defined by the following 

state-space equation 

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

u u d d

u

x t A A x t B B u t B B d t

y t C x t D u t

= + ∆ + + ∆ + + ∆
 = +

ɺ
  (1) 

where ( )x t is the state vector, ( )u t is the input control, ( )y t is 

the output of the system and ( )d t is an external disturbance. 

A ,
u

B ,
d

B , C and
u

D are real matrices. A∆ , u
B∆ and d

B∆ denote 

real matrix functions representing norm-bounded time varying 

parametric uncertainties in the system model.  

We consider the following assumptions: 

(i) The pair ( , )
u

A B is stabilizable 

(ii) ( )d t is an external disturbance signal with finite energy 

in the space [ )2
0,L +∞   
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(iii) Uncertainties under consideration have the following 

form 

    ( )

( )

( )

( ). ( )

A

u u u u Bu

d d d d Bd

T

A A A A HF t E

B B B B HF t E

B B B B HF t E

F t F t I

∆

∆

∆

= + ∆ = +
 = + ∆ = +
 = + ∆ = +
 <

                             (2) 

where I is the identity matrix of appropriate dimensions. 

( )F t  is unknown real time varying matrix contain uncertain 

parameters and H , 
A

E , 
Bu

E  and 
Bd

E  are known constant 

real matrices of appropriate dimensions denote how the 

uncertain parameters ( )F t affect the system (1). 

The output error is defined by ( ) ( ) ( )e t r t y t= −  where 

( ) ( )r t r t T= +  is the periodic reference and T  is the 

fundamental period. 
 

The robust repetitive control law proposed of the system is 

( ) ( ) ( )rob repu t G x t G t= + Φ                                                   (3) 

    
( ),                   0

( )
( ) ( ),    

e t t T
t

t T e t t T

≤ <
Φ = Φ − + ≥

                                     (4) 

where ( )tΦ defines the output signal of the repetitive 

controller and pair ( ),rob repG G creates gain matrices to be 

determined. The first describes control action and the second 

describes the learning action. 

Consider now the variables k ∈ℕ which used to describe 

learning between periods, [ [0,Tτ ∈ is a domain to depict 

control inside a period and ( )tψ which is described in the time 

domain by 

( ) ( ) : ( )

( ) ( ) ( ) : ( )

k

k

t kT

t t t T

ψ ψ τ ψ τ
ψ ψ ψ ψ τ

= + =
∆ = − − = ∆

                                  (5) 

Then, according to (1) - (5), we have 

( ) ( ) ( ) ( )
k k u k d k

x A x B u B dτ τ τ τ∆ ∆ ∆∆ = ∆ + ∆ + ∆ɺ                      (6) 

1
( ) ( ) - ( ) - ( )

k k k u k
e e C x D uτ τ τ τ−= ∆ ∆                                   (7) 

Equations (6) and (7) creates a two-dimensional (2D) 

continuous-discrete hybrid model of the repetitive control 

system.  

Next, the 2D control law can be written  

1 2 1
( ) ( ) ( )

k k k
u G x G eτ τ τ−∆ = ∆ +                                               (8) 

where  

1

1

1

2

=( ) ( )

( )

rep u rob rep

rep u rep

G I G D G G C

G I G D G

−

−

 + −


= +

                                      (9) 

Therefore, it is easy to conclude that the design of a 2D 

control law (8) is equally equivalent to design of a control law 

(3). Thus, the control system (3) is stable if a 2D stabilizing 

control law (8) is designed for the 2D system (9) and the 

matrices gains are given by 

1

1 2 2 1

1

2 2

( ) ( )

( )

rob u u

rep u

G G G I D G D G C

G G I D G

−

−

 = + − +


= −
                         (10) 

Consequently, it is easy to adjust independently the robust 

control and learning actions using 
1

G  and 
2

G  respectively 

because the control action depends on both gains 
1

G  and 
2

G , 

while the learning action depends only on 
2

G . However, it is 

very difficult to do that using
rob

G and
repG . 

In order to achieve the main results, some necessaries 

preliminaries will be introducing.  

Lemma 1. (Shur complement) [19]: For any symmetric 

matrix, Θ , of the form 11 11

12 22

T Θ Θ
Θ =  Θ Θ 

. If 
22Θ  is invertible 

then the following property hold: 

1

22 11 12 22 12
0  0  - 0Tif and −Θ < Θ < Θ Θ Θ Θ <                        (11) 

Lemma 2. [20]: Given matrices TK K= , J , F  and E of 

appropriate dimensions, then 

( ) 0
T

K JFE JFE+ + <                                                     (12) 

for all F  satisfying TF F I≤ , if and only if there exists some 

0ε > such that 

1
0

T T
K JJ E Eε ε −+ + <                                                   (13) 

Definition 1. [21]: An LMI region is defined by a subset of 

the complex plane given by 

{ }: 0z

T
z zD z= ∈ ϒ + Λ + Λ <ℂ                                      (14) 

where Tϒ = ϒ and Λ are two real matrices. 

In this paper, LMI region chosen is the intersection of three 

regions given by  

         D1: conical sector : 

Re( ) Im( ) 0

arctan

a z b z

a
h

b

 + <

  = − 

 

 

         D2: disk of radius r centered at (q,0) 

         D3: stabilityα − : Re( )z α< −  



Theorem 1. [21]: Let Π a real matrix and 1 2 3zD D D D= ∩ ∩  

be an LMI region. All the eigenvalues of Π  are in LMI region 

zD if exists a symmetric matrix Ψ such that we have the 

followings LMI 

( ) ( )
0

( )

T

T T

h

h

 ΠΨ + ΨΠ ∗
< ΨΠ − ΠΨ ΠΨ + ΨΠ 

                            (15) 

( )
0

T

r

q r

− Ψ ∗ 
< − Ψ + ΨΠ − Ψ 

                                                (16) 

2 0TαΨ + ΠΨ + ΨΠ <                                                      (17) 

In the next section, we will study the problem of H∞ control 

with D-stability constraint for uncertain continuous-time 

repetitive systems which is used to analyze the system stability 

and to prove the convergence of the tracking error. The 

synthesis of this control law will be based on the optimization 

problem under LMI constraints. 

III. MAIN RESULTS 

This section is devoted to developing the robust H∞ control 

based on a repetitive control for uncertain system (1) and it is 

desired that the poles of the closed-loop system remain in 

region 
zD  of the complex plane.  

Consider the following two-dimensional Lyapunov function  

1, 2,
( ) ( ) ( ) ( ) ( ) ( ) ( )

T T

k k k k k k k
V V V x P x e Qeτ τ τ τ τ τ τ= + = ∆ ∆ + (18)            

where 0P > and 0Q > are a symmetrical matrices. 

The H∞ disturbance attenuation holds if there exist a scalar 

0γ >   such that the Hamiltonian satisfies  

( ) ( ) ( ) ( ) ( )2

1 1( ) 0
T T

k kk kk kV e e d dτ τ γ ττ τ τ− − −+ ∆= ∆ ∆ <H    (19) 

A sufficient existence conditions solutions must be satisfied 

and the problem of control law synthesis is solved by the 

following theorem: 

Theorem 2. : For the uncertain system (1) and a given 

constant 0γ > , if there exists two symmetric matrices
1

0Π > , 

2
0Π > and two matrices 

1
Γ , 

2
Γ  and a scalar 0ε >  satisfying 

the followings LMI: 

2

1 2

3 2 2

2

4 2

2

5 2

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

0 0 ( ) ( ) ( ) ( ) ( )

0 0 0 ( ) ( ) ( ) ( )

0 0 0 0 0 ( ) ( ) ( )

0 0 0 0 0 ( ) ( )

0 0 0 0 0 0 ( )

0 0 0 0 0

T T

u

T

d

Bu Bd

B

B I

I I

H I

E E I

α α
α

γ
α

ε ε
α ε

−Π ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
 ∗ ∗ ∗ ∗ ∗ ∗ ∗
 Γ −Π ∗ ∗ ∗ ∗ ∗ ∗
 − ∗ ∗ ∗ ∗ ∗
 −Π ∗ ∗ ∗ ∗


−Π ∗ ∗ ∗
 − ∗ ∗


− ∗
Γ −

0







<





 
 



   (20) 

2

6 2

5

5

(*) (*) (*) (*) (*)

(*) (*) (*) (*)

(*) (*) (*)
0

0 (*) (*)

0 0 0 (*)

0 0 0 0

T T

T T

h

h

hH H I

H hH I

I

I

α
α α

ε
ε

α ε
α ε

 
 
 
 − −

< − 
 −
 

−  

                     (21) 

1

1 1 1 1

5

(*) (*) (*)

(*) (*)
0

0 (*)

0 0

T T

u

T

r

q A B r

H I

I

ε
α ε

− Π 
 − Π + Π + Γ − Π  <
 −
 − 

               (22) 

1 2

5

2 (*) (*)

(*) 0

0

TH I

I

α α
ε ε
α ε

Π + 
 − < 
 − 

                                            (23) 

where 

1 1 1

2 1 1 1 1

3 2 2

4 1 1

5 1 1

6 1 1 1 1

T T T

u

T T T

u u

T T

u

u

A Bu

T T T

u u

C D

A A B B

D

C D

E E

A A B B

α
α
α
α
α
α

 = Π + Γ


= Π + Π + Γ + Γ
 = Γ − Π


= Π + Γ
 = Π + Γ

 = Π − Π + Γ − Γ

                                   (24) 

then the system is generalized quadratically D-stable with H∞  

performance γ . After resolution of the LMI (20-23), the 

stabilization gains are given by 

1 1

1 1 1 2 2 2. ,       .G G
− −= Γ Π = Γ Π                                           (25) 

Proof. : 

The associated increment with Lyapunov function is defined 

by 

1, 2,

1 1 1

( ) ( ) ( )

           ( ) ( ) ( ) ( )

              ( ) ( ) ( ) ( )

k k k

T T

k k k k

T T

k k k k

V V V

x P x x P x

e Qe e Qe

τ τ τ

τ τ τ τ
τ τ τ τ− − −

∆ = + ∆

= ∆ ∆ + ∆ ∆

+ −

ɺ

ɺ ɺ                     (26) 

Equation (19) can be set in the following form 

( )
( )
( )

[ ]
( )
( )
( )

1 1 0( )

T

k k

k

k

k k

k

x x

e e

d d

τ τ
τ τ

τ
τ

τ
− −

∆ ∆   
   Χ <   
   ∆ ∆   

=H                               (27) 

where  

11

21 22

2

( ) ( )

( ) 0

0
T

d
B P Iγ∆

Χ ∗ ∗ 
 Χ = Χ Χ ∗ < 
 − 

                                           (28) 

 



and 

11 1 1 1 1

21 2 2 1

22 2 2

( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( )

T T

u u u u

T T

u u u

T

u u

A B G P A B G C D G Q C D G

B G P D G I Q C D G

D G I Q D G I I Q

∆ ∆ ∆ ∆

∆

Χ = + + + + +

Χ = + − +
Χ = − − + −

(29) 

Let 

    
1 2

0 0

u uA B G B G
W

∆ ∆ ∆+ 
=  
 

, 
1 2

0 0

u u

T
C D G D G I

 
=  + − 

,     

     
1 0

0 0

uC D G
Y

+ 
=  
 

, [ ]0Z I= , 
0

dB
U

 
=  
 

. 

     
0

0 0

P
V

 
=  
 

,
0

0

Q
R

Q

 
=  
 

, 
0 0

0
S

Q

 
=  
 

 

The inequality (28) becomes in the following expression 

( )
2

*
0

T T T T

T

W V VW T RT Y RY Z Z S

U V Iγ
 + + + + −

Χ = < − 
     (29) 

Lemma 1 is used as many times as necessary and (29) can be 

rewritten by 

 2

(*) (*) (*) (*)

(*) (*) (*)

00 (*) (*)

0 0 (*)

0 0 0

T T

T

R

T R W V VW S

U V I

RY R

Z I

γ

− 
 + − 
 Χ = <−
 − 
 − 

        (30) 

After replacing the variables with their expressions in (30), we 

get the following LMI 

1 2

3 4

2

5

(*) (*) (*) (*) (*) (*)

(*) (*) (*) (*) (*)

(*) (*) (*) (*)

00 0 (*) (*) (*)

0 0 0 (*) (*)

0 0 0 0 0 (*)

0 0 0 0 0

T

d

Q

Q

B P I

Q

Q

I I

λ λ
λ λ

γ
λ

∆

− 
 
 
 −
 Χ = <− 
 −
 

− 
 − 

         (31) 

where 

1 1

2 1 1

3 2

4 2

5 1

( )

( ) ( )

( )

( )

( )

T

u

T

u u

T

u

T

u

u

C D G Q

A B G P P A B G

D G I Q

B G P

Q C D G

λ
λ
λ
λ
λ

∆ ∆ ∆ ∆

∆

 = +


= + + +
 = −
 =
 = +


                            (32) 

Pre-multiply and post-multiply (31), respectively, by 

{ }1 1 1 1 1 1
, , , , , , ,diag Q Q P Q I Q Q I

− − − − − −
 and its transpose. Thus, 

the LMI becomes             

1

1 2

1

3 4

2

1

5

1

(*) (*) (*) (*) (*) (*)

(*) (*) (*) (*) (*)

(*) (*) (*) (*)

00 0 (*) (*) (*)

0 0 0 (*) (*)

0 0 0 0 0 (*)

0 0 0 0 0

T

d

Q

Q

B I

Q

Q

I I

δ δ
δ δ

γ
δ

−

−

∆
−

−

 −
 
 
 −
 

Χ = <− 
 −
 

− 
 − 

(33) 

where 

1

1 1

1 1

2 1 1

1

3 2

1

4 2

1

5 1

( )

( ) ( )

( )

( )

( )

T

u

T

u u

T

u

T

u

u

P C D G

P A B G A B G P

Q D G I

Q B G

C D G P

δ
δ
δ
δ
δ

−

− −
∆ ∆ ∆ ∆

−

−
∆

−

 = +


= + + +
 = −
 =
 = +

                      (34) 

Let 

[ ]
[ ]

1

1

1

2

1 1 1

2 2 2

0

0 1 1 2

0 0 0 0 0 0

0 0 0 0

T

T

A Bu Bu Bd

P

Q

G

G

H H

E E E E E

−

−

Π =


Π =
Γ = Π
Γ = Π

 =

 = Π + Γ Γ

    (35)                                        

Let
0

Σ be the matrix that we consider X for the nominal 

system. 

Now, it suffices to apply theorem 1 and replace the matrix Ψ  

by 
1cl u

A A B G∆ ∆= +  and choose
1

Π = Π .  

2

6 2

( )
0

h

h

α
α α

∆

∆ ∆

∗ 
< 

 
                                                            (36)                                        

1

1 1 1 1

(*)
0

T T T

u

r

q A B r∆ ∆

− Π 
< − Π + Π + Γ − Π 

                                (37)                                        

1 1 1 1 1
2 0T T T

u u
A A B Bα ∆ ∆ ∆ ∆Π + Π + Π + Γ + Γ <                        (38) 

where 

2 1 1 1 1

6 1 1 1 1

T T T

u u

T T T

u u

A A B B

A A B B

α
α

∆ ∆ ∆ ∆ ∆

∆ ∆ ∆ ∆ ∆

 = Π + Π + Γ + Γ


= Π − Π + Γ − Γ
                              (39)                                        

Let 

2

1

6 2

1

1 1 1 1 1

(*)

( , )
T T

A Bu A Bu

h

h

hH H
H

H hH

E diag E E E E

α
α α

  
Σ =  

 
   =  − 
 = Π + Γ Π + Γ



                     (40)                   



1

2

1 1 1 1

2

2 1 1

(*)

0

0

T T T

u

T

A Bu

r

q A B r

H
H

E E E

 − Π 
Σ =  − Π + Π + Γ − Π 
   =  

 
  = Π + Γ 


                             (41) 

3 1 1 1 1 1

3

3 1 1

2 T T T

u u

T

A Bu

A A B B

H H

E E E

αΣ = Π + Π + Π + Γ + Γ


=
 = Π + Γ

                       (42)                               

Applying Lemma 1 and Lemma 2, inequalities (33, 36-38) can 

be given in the form  

1

(*) (*)

(*) 0

0

x

T

x

x

H I

E I

ε
ε

−

Σ 
 − < 
 − 

                                                   (43) 

where index x=0,1,2,3. 

Equation (43) will be pre-multiplying and post-multiplying, 

respectively, by { }, ,diag I I Iε  and its transpose. Therefore, 

the LMI becomes             

(*) (*)

(*) 0

0

x

T

x

x

H I

E I

ε ε
ε

Σ 
 − < 
 − 

                                                   (44) 

After replacing and rearrange correspondent’s terms, we get 

LMI (20-23). This completes the proof. 

IV. EXAMPLE 

In this section, we give an example to demonstrate the 

effectiveness of the proposed approach. Consider the 

following nominal linear system: 

[ ]

2 3 1 0.2
( ) ( ) ( ) ( )

4 5 2 0.2

( ) 4 0 ( ) ( )

x t x t u t d t

y t x t u t

 −     
= + +      −     

 = +

ɺ

                

(45) 

The uncertain matrices are described by: 

( ) ( )1 exp( ),sin(2 )F t diag t t= − −                                         (46) 

0 0

1 0.1
H

 
=  
 

,
1 0

0 1
AE

 
=  
 

,
0.5

0
BuE

 
=  
 

,
0.1

0.1
BdE

 
=  
 

 

The periodic reference trajectory and the external disturbance 

applied to the system has been defined, respectively, by the 

following functions: 

( ) 2 4
sin 0.5sin

10 10
r t t t

π π   = +   
   

                                     (47) 

( ) 2
0.5sin

10
d t t

π =  
 

                                                        (48) 

Thus, subject to constraints 
z

D  we can choose 

2,  0,  5 and 1h q r α= = = = . 

 

 

 

Fig. 1: Simulation results (r(t)/y(t), e(t), u(t)) for the nominal system 

 

 

 

Fig. 2: Simulation results (r(t)/y(t), e(t), u(t)) for the uncertain system 

For the nominal system, by using Theorem 2, the gains of 2D 

controller and parameters of the robust repetitive control are: 



[ ]
[ ]

1 2     -2.9186   2.1421 ,    0.2265

-2.6019   2.7694 ,  0  .2928
rob rep

G G

G G

 =

=

=

=




                   (49) 

Simulation results (reference signal/output, tracking error and 

control input) in Fig. 1 show that the system is stable in 

closed-loop and enters the steady state in the third period.  

For the uncertain system, the gains of 2D controller and 

parameters of the robust repetitive control are: 

[ ]
[ ]

1 22.5794 1.3433  0.1053

 2.4122 1.5013  0.1

   ,  

1

 

, 7

 

7 
rob rep

G G

G G

 = − =

= − =




                     (50) 

Simulation results are shown in Fig. 2. It easy to remark that 

the system is robustly stable for the periodic uncertainties and 

it enters into the steady state in the seventh period.  

V. CONCLUSION 

This paper has as objective to study the problem of H-infinity 

control with D-stability constraint for uncertain continuous-

time repetitive systems with external disturbances and design 

a control law, such that the closed-loop poles are placed within 

a particular region of the complex plane for all admissible 

uncertainties. Firstly, an equivalence between a two-

dimensional control system and a repetitive control scheme 

such that study of convergence and stability properties have 

been proved. By analyzing these properties, all of the obtained 

conditions are formulated in the form of linear matrix 

inequalities and solutions gives the agreed controller gains. 

Finally, the performance of the proposed control law was 

tested and simulated on an example and results are 

competitive in term of robustness and convergence. Repetitive 

control is no different from other control laws. It has its 

advantages, its disadvantages, its problems of robustness and 

applicability. However, it remains recommended for processes 

that work periodically or repetitively. Authors intend to 

continue research on this problem and the extension of 

obtained results to other class parameter uncertainty is actually 

under study. 
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