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Abstract—This paper deals with faults diagnosis of induction 

motors (IM) based on advanced wavelet transform technic 

namely recursive stationary wavelet packet transform (RSWPT). 

Most often, broken rotor bar (BRB) frequency components are 

hardly detected in the stator current due to its low magnitude and 

its closeness to the supply frequency component. Compared to the 

traditional wavelet transforms technics, RSWPT can eliminate 

completely the fundamental frequency. The use of a lower 

sampling rate is an important factor to optimize the cost and the 

computation time of the diagnosis systems. The experimental 

results show that the proposed methods have a good performance 

to detect BRB under different load conditions and different fault 

severity.  

Keywords— Fault detection, Induction Motor, Broken-Rotor-

Bar, Wavelet Transforms. 

I. INTRODUCTION 

The IM has dominated the field of electromechanical energy 

conversion due to its robustness and the convenient power 

weight ratio. Despite its robustness, the IM presents some 

faults such as BRB [1-5]. This failure has become an important 

issue in the field of fault diagnosis. Indeed, operating IM with 

BRB may not only damage the motor itself, but can also have 

a catastrophic impact on the related machines. The BRB fault 

introduces sideband component around the fundamental 

frequency in the current spectrum [1-4]. The frequency fault is 

given by   fb fsf  1 , where fb is the sideband frequency 

associated to the BRB, s is the motor slip per unit and ff is the 

fundamental frequency. The Motor Current Signature Analysis 

(MCSA) is one of the most used techniques in IM fault 

detection [1-4]. The main purpose of MCSA is to analyze the 

stator current and detect the current harmonics related to the 

fault [1-4]. The MCSA is nearly used to extract the sensitive 

feature related to the fault. Filippetti et al. [5] estimated the 

amplitude of the BRB frequency by FFT. However, the 

spectral leakage can make the frequency fault detection 

difficult under slow motor slip.  Ayan et al. [6] improved this 

inconvenience by using Welch power spectral density (PSD) 

estimation as a feature extraction method with sampling 

frequency fs of 10 kHz and number of samples Ns  of 20 000 

samples. The experimental results showed that the proposed 

method is able to detect the faulty conditions with high 

accuracy. Notwithstanding, this approach requires a steady-

state operating condition. To overcome this problem 

Sadeghian et al. [7] presented an algorithm based on wavelet 

packet transform with fs = 1920 Hz and Ns = 9984 samples. 

However, the method needed slip estimation which has made 

the automatic detection difficult. To overcome this problem Kia 

[8] applied Discrete Wavelet Transform (DWT) to the space-

vector magnitude of the stator phase current and computed the 

coefficient energy associated to the rotor fault with fs = 10 Khz 

and Ns = 65536 samples. This approach was successfully tested 

with different load level. Nevertheless, the use of the space-

vector current requires three current sensors which made 

detection more expensive. Bouzida [9] employed one current 

sensor and DWT to detect BRB under with fs  = 10 Khz and 

Ns = 100000 samples. Yet, all these methods required good 

knowledge of the signals to find the correct fs and Ns to improve 

the detection of faults [5-7]. As a matter of fact, the sampling 

rate and number of samples are closely related to the fault 

detection performance.  In addition, the use of a low sampling 

rate and a small number of samples mean less computation 

time, which could lead to more effective and less expensive 

embedded system design for motor condition monitoring 

applications [10]. 
 

This paper aims to evaluate BRB feature extraction 

performance of a novel wavelet technique namely RSWPT. 

Compared to the traditional feature extraction techniques such 

as DWT and (Wavelet Packet Transform) WPT, RSWPT 

eliminates entirely the fundamental frequency, does not affect 

the fault frequency components, and provides only one 

sensitive descriptor for arbitrary load under a lower sampling 

rate of 224 Hz and 1024 samples. The energy of the descriptor 

is statistically evaluated using a boxplot.  

 

The reminder of this paper is organized as follows: section 2 

recalls RSWPT technique. Section 3 describes the 

experimental setup. Section 4 evaluates the RSWPT feature 

extraction performance. Section 5 concludes the findings of 

this paper. 

II. RECURSIVE STATIONARY WAVELET PACKET TRANSFORM 
 

The DWT is widly used in signal processing, image analysis, 

telecommunication and failure forecasting techniques [11]. 

Mallat's pyramid algorithm which is deemed to be an 

important algorithm for computing the DWT coefficients 

consists of a collection of high-pass (H) and low-pass (L) 

filters giving two coefficients namely details and 

approximations. In the next decomposition levels, the filters 

are only applied to the approximations. Compared with DWT, 
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the Wavelet packet transform (WPT) decomposes recursively 

the details and approximations coefficients, thus constructing a 

tree-structured multiband extension of the wavelet transform 

[11]. The main drawback of WPT and DWT is the 

subsampling which reduces the temporal resolution. To get 

around this inconvenience and keep all coefficients samples, 

SWPT is performed to eliminate the subsampling in each 

level. Fig. 1 shows two levels SWPT decomposition tree for 

two levels. The frequency range of the SWPT coefficients is 

shown in Fig. 2. It can be calculated by
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Fig. 1. The SWPT decomposition tree for two levels. 

 

 

 

  

 

 

 

 

 
 

 
 

Fig. 2. Frequency band for SWPT coefficients 

In many applications WPT and SWPT can’t filter completely 

the adverse frequency around the wavelet coefficient 

frequency bandwidth [12]. In order to improve the quality 

factor of SWPT filter a new algorithm based on RSWPT is 

proposed, see Fig. 3. Q is defined by the following equation 

Q

f
f 0   Where f is the center frequency of the coefficient 

and Δf is the frequency bandwidth between the -3 dB points 

located on either side of the center frequency. (Qacc) is the 

acceptable Q factor. k is number of SWPT decomposition. 

Expression of SWPT (1) and (2 ) can be rewritten as 

 

                                         
     tRtHtR njjnj ,12,1                           (1) 

                                        
     tRtLtR njjnj ,112,1                        (2) 

The Convolution Theorem gives  

                                        
     frfhfr njjnj ,12,1                          (3) 

                      frfltr njjnj ,112,1                          (4) 

The RSWPT is mathematically expressed as 

      k1jn,j
k fhfufR

n2,1j 


                  (5) 

      k1jn,j
k flfufR

1n2,1j 


                 (6)  

Fig. 4 show a theoretical example shape of the frequency 

response of RSWPT filters at k level 1, 2 and 3. It can be seen 

that 3k2k1k Q Q  Q   The RSWPT can highly improve the 

quality factor of UWPT filter.  

 

 

 

 

 

 

            

 

 

 

    
 

Fig. 3. RSWPT based algorithm. 

 

 
 

 

 

Fig. 4. RSWPT filters at k level 1, 2 and 3. 

III. EXPERIMENTAL SETUP AND FEATURE EXTRACTION 

PERFORMANCE  

In order validate the proposed method, experiment tests were 

performed with squirrel-cage IM which characteristics are 4 

poles, 50 Hz, 380V, 1.7A and 0.75 HP. The experimental 

setup consists of IM, a load DC motor, current amplifier and 

sensors, see Fig. 5. The IM is tested under healthy rotor, one 

and two BRB under fs = 224 Hz and Ns=1024 samples, see Fig. 

6. For each individual case, 15 sets of motor-current data were 

collected with different load conditions namely 25%, 50%, 

75% and 100%. 
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Fig. 5. The experimentation setup. 

 
Fig. 6. Rotor with two broken bars. 

IV. FEATURE EXTRACTION PERFORMANCE  
 

In fact, the BRB introduces a frequency component given 

by   fb fsf 21 [1]-[5]. The slip value is varied from 1.7 to 

6.3%. Therefore, the left affected frequency range is [43.7, 

48.3 Hz]. Using fs = 224 Hz, the coefficients of DWT which 

cover the faulty frequency bandwidth are Ca1 [0, 56 Hz], and 

Cd2 [23, 56 Hz]. The existence of ff in all DWT features makes 

this technique inappropriate for fault diagnosis. Fig. 7 shows a 

part of RSWPT and WPT tree decomposition for four levels 

where the gray cell corresponds to the coefficient which cover 

the faulty frequency bandwidth. The ff is filtered which makes 

the coefficient very sensitive to the fault. Using WPT, at level 

4, the length of signal will be 1024/2
4
 = 64 samples 

consequently the WPT cannot be used for BRB detection. 

RSWPT has better temporal resolution than WPT because it is 

implemented without subsampling.  

In RSWPT the filter frequency response heavily depends 

on the mother wavelet. Sadeghian et al. [9] demonstrated that 

all mother wavelets present comparable feature extraction in 

BRB detection. In this work the approximation of Meyer 

mother Wavelet is used. Figs. 8 and 9 present PSD Welch 

estimate of 
1

47,4R and 
4

47,4R  under 50% of load. The 
1

47,4R  

PSD shows that the amplitude of ff is reduced but is not 

entirely filtered. In spite of the BRB sideband frequency are 

very close to the ff and their magnitudes are considerably small, 

RSWPT at level four 
4

47,4R  remove completely ff and improve 

significantly the detection performance. 

 

 

Fig. 7. RSWPT tree decomposition for four levels. 

 

 

  

Fig. 8. PSD Welch estimates of 
1

47,4R . 

 
Fig. 9. PSD Welch estimates of 

4
47,4R . 
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Fig. 10. Load evolution 

 

 

 

 

 

 
 

Fig. 11. 
4

47,4R  evolution for HLT  

 

 

 

 

 

 

 

Fig. 12. 
4

47,4R  evolution for 1 BRB 

 

Fig. 13. 
4

47,4R  evolution for 2 BRB 

 

The 
4

47,4R  evolution at a load of 25%, 75% and 100% for a 

HLT, one and two BRB are shown in Figs. 11, 12 and 13. For 

HLT conditions,
4

47,4R is very small, while under one and two 

broken rotor bar, the parameter amplitude is increasing with 

the load. At different load levels, there is a direct relation 

between 
4

47,4R and the fault severity. These differences in the 

feature amplitude between HLT, faulty motor conditions show 

that they can be applied for broken rotor bar diagnosis. 

 

In order to show the feature extraction performance of 

PSWT, the Matlab Statistics Toolbox is used to generate a 

boxplot of 
4

47,4R  energy. The main advantage of the boxplot is 

its ability to compare two populations without knowing 

anything about the underlying statistical distributions of those 

populations. Figs. 16, 17, 18 and 19 depict the boxplot of 
4

47,4R  energy under a load of 25%, 50%, 75%, and 100% 

respectively. It’s clear that the energy median of HLT, 1BRB 

and 2BRB is different. It can be concluded that 
4

47,4R  has a 

good sensibility of BRB default. 

The distance between the different medians (M) gives an 

idea about the discrimination ability of this diagnosis 

parameter. M25%;HLT_1BRB, M50%;HLT_1BRB, M75%;HLT_1BRB and 

M100%;HLT_1BRB are defined as the difference between the 

median of HLT and 1 BRB energy under 25%, 50%, 75% and  

100% load respectively. Observe that 

M25%;HLT_1BRB < M50%;HLT_1BRB< M75%;HLT_1BRB< M100%;HLT_1BRB. 
Thus, the heavier load condition provides better discrimination 

ability than the lighter load condition. On the other hand, it can 

be observed that the medians related to 2BRB are always 

greater than those of 1BRB. Therefore, there is a direct 

relation between the energy of the feature coefficients and the 

severity of the faults. However M25%;1BRB_2BRB are relatively 

small and the overlap between the box of 1BRB and 2BRB is 

not very large. Hence, it is difficult to make a difference 

between 1BRB and 2BRB under light loads. 
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 Fig. 14. Distribution of 
4

47,4R  under 25% of load. 

 

 

Fig. 15. Distribution of 
4

47,4R  under 50% of load 

 

Fig. 16. Distribution of 
4

47,4R  under 75% of load 

 

Fig. 17. Distribution of 
4

47,4R  under 100% of load 

 

V. CONCLUSION 

In this paper, the RSWPT technique is applied and lower 

sampling rate for a fault diagnosis of broken-rotor-bar under 

different load conditions. The use of a lower sampling rate is 

an important factor to optimize the cost and the computation 

time of the diagnosis embedded systems. The energy of the 

RSWPT coefficients affected by the BRB default was 

proposed as the diagnosis parameter. The statistical analysis 

illustrate that RSWPT presents a good feature extraction 

performance. Based on this technique, new experiments are 

under development to diagnosis other faults of motor such 

eccentricity and bearing defects.  
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