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Abstract — This paper presents a model predictive control 

(MPC) strategy based on particle swarm optimization (PSO) to 

solve the nonlinear system control problem.  First, a Takagi–

Sugeno (TS) fuzzy model is established to approximate the 

behavior of these nonlinear systems. Then, a specially designed 

PSO algorithm is employed to calculate the MPC weight 

parameters. The combination between the MPC and the optimal 

control is added for the calculation of the control signal. 

Moreover, the PSO seeks the best MPC weight parameters 

guaranteeing desired performances of our output with a 

minimum of control signal. The numerical results for two 

physical examples show the effectiveness of our proposed 

method. 

Keywords— Takagi-Sugeno fuzzy model, model predictive 

control. particle swarm optimization, optimal control. 

I. INTRODUCTION 

During the last decades, numerous successful applications of 

the technology because of the use of model predictive 

controller (MPC). The MPC is an advanced control [1], in 

which an optimization procedure is performed to calculate 

optimal control actions. It uses a model of the process 

explicitly to obtain the control signal which minimizes an 

objective function. In the predictive group, the generalized 

predictive control (GPC) is the most widely used method in 

power plant control ([2]; [3]). For instance, a nonlinear GPC 

based on neuro-fuzzy network for controlling the superheated 

steam temperature of a 200 MW power plant [4]. Several 

other approaches were proposed in the literature to solve the 

predictive control problem. Some of them are based on 

numerical optimization algorithms. Some others are based on 

optimization algorithms such as the genetic algorithms (GA), 

Ref. [5] proposed a hybrid predictive control strategy to 

regulate the temperature of a batch reactor by minimizing 

both the trajectory error and the control energy based on GA. 

However, GA has the disadvantage of premature and slow 

convergence rate, and needed many parameter settings. 

Recently, many studies have proposed the evolutionary 

computation technique based on Particle Swarm Optimization 

(PSO) [6, 7]. They have been successfully applied to solve 

various optimization problems. Indeed, Rfe. [8] presents a 

predictive controller based on recursive linear models. Where 

the optimization problem is solved using the PSO algorithm. 

In the same context, the PSO have been applied successfully 

to optimize the control law of a multivariable generalized 

predictive control ([9, 10, 11 ].In These papers, the PSO is 

used to finally tune predictive control (NMPC) law of 

obtained by minimizing a defined objective function. In other 

methods, PSO solve the problem of calculating the best MPC 

weight parameters (MPC-PSO) [12]. This motion keeps the 

principle of calculation of the control signal. But, using this 

method results in several disadvantages especially for 

nonlinear systems. The MPC is a method of designing control 

with feedback by solving an optimal control problem from 

the present time point, and using the output values for 

resolution of the problem at the next time point.  So, Firstly, it 

is difficult to obtain a mathematical expression for MPC 

feedback performance. Secondly, In any case, feedback 

performance depends greatly on the optimal control 

parameters.  

In this paper, Firstly, for the modelling phase, the T–S fuzzy 

model is employed to approximate the nonlinear system. 

Secondly, we treated the MPC problem who’s the optimal 

control problem is solved repetitively online using the values 

of our system, which might be interpreted as the inverse 

problem of finding the parameters of the optimal control 

problem so as to obtain desirable plant outputs. And we 

proposed a parameter optimization method for optimal 

control to improve feedback performance.  

The remainder of this paper is organized as follows. In 

Section 2, a brief overview of the MPC system and its 

parameter tuning. The Formulation of MPC parameter 

optimization problem is detailed in Section 3 with two 

examples to show the effectiveness of our proposal for two 

linear systems in Section 4. In the section 5, a proposed 

algorithm with PSO for parameter optimization of MPC 

system. An applying our algorithm on nonlinear systems in 

section 6. Simulation results and conclusion are given in 

section 7 and section 8 respectively. 

2. THE MPC SYSTEM AND ITS PARAMETER 

TUNING 

In this work, we formulate a feedback system using MPC and 

the problem of parameter optimization. For this, we 

considered the variable k as a discrete time. Assume that the 
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model of controlled object is given at the k
th

 time point along 

with the detected state quantity ( )x k .     

Then we applied the principle of optimal control for finding 

the optimal control input series 

 ˆ ˆ(. ) ( ) 1,2,...,u k u i k i I  for a finite time interval I. So the 

corresponding optimal state quantity series ˆ ˆ(. ) ( )x k x i k  

is formulated as follows : 

      
(. ) 0

(. ) arg min ( ( ), ( ), )
I

u k i

u k F x i k u i k w


 


        (1)                                                                                                                      

   ( 1 ) ( ( ), ( ))x i k f x i k u i k 


1,2,...,i I       (2)                                                                                                                                      

Here ( )u i k  and ( )x i k  denote the input to the plant model 

and the plant state quantity at instant k i , F   denote the 

performance function, it   included the parameters w . The 

problem is solved by using the detected state quantity ( )x k  

of the system at constant as the initial state (0 )x k  and only 

(0 )u k  is applied as the input ( )u k  to the process. This 

procedure is repeated at 1,2,...,k K . The relationship 

between the input series  .u thus obtained and the observed 

state quantity series  .x  of model is described for 

convenience as follows: 

       ( 1) ( ( ), ( ))x k f x k u k   1,2,...,k K                 (3)                                                                                                                 
 

Here we assume that the initial state (1)x is given at the start 

of control. This repetitive procedure of solution of the optimal 

control problem, and the inputting of the initial value of the 

optimal control. The input to process can be expressed by the 

time series shown in Figure 1.  The process of generation of 

the input  .u
 
to the system corresponding to its detected 

state  .x  can be expressed using the operator G  for solving 

the optimal control problem: 

( ) ( ( ), )u k G x k w                                                      (4)                                                                                                                                 

The feedback function ( ( ), )G x k w  depends on the time-

varying parameters w  of optimal control. The above is the 

principle of feedback control using MPC. Figure 2 shows the 

principle of feedback control MPC using an 

operator ( ( ), )G x k w . As can be seen from the diagram, the 

feedback function depends on the time-varying parameters w  

of optimal control. 

( ) ( ) ( )x k Ax k Bu k  ( ) ( ) ( )x k Ax k Bu k 

(0 1) (1)x x (1) (0 1)u u


(1)x (1)u

(0 1)x (0 1)u


(0 1) ( (0 1))

(0 1)

( 11)

u G x

u

u I



 
 
 
  








(0 1)

( 11)

( 1)

x

x I

x I

 
 
 
 
 
 
 








OptimalControl

1k  2k 

(2)x

 

Fig. 1. Time series of MPC 

process

MPC

Optimal control

( ) ( ( ), )u k G x k w ( 1) ( ( ))x k f x k 

 

Fig 2. Feedback process of model predictive control 

3. FORMULATION OF MPC PARAMETER 

OPTIMIZATION PROBLEM 

The feedback function of the MPC system described above 

depends strongly on the parameters w  included in the 

optimal control problem. For this purpose, the system model 

is often made linear, and the performance function is set in 

quadratic form: 

 
2 2

1 1

( , , ) ( ) ( )
n m

xi i xi ui i ui

i i

F x u w w x r w u r
 

            (5)                                                                                                                 



Conférence Internationale en Automatique & Traitement de Signal (ATS-2017)  

Proceedings of Engineering and Technology – PET 

Vol.22 pp.53-60 
 

Copyright IPCO-2017 

ISSN 2356-5608 
 

ˆ( , )f x w Ax Bu                                                        (6)                                                                                                                                            

In this case, w  is a parameter vector composed of weights 

, 1,2,...,xiw i n and , 1,2,...,uiw i m  of performance function 

F  and a  is a parameter vector composed of elements of 

matrices ,A B of linear model f̂ . In order to improve the 

characteristics, the parameters w of optimal control must be 

tuned accordingly. The problem of parameter optimization 

can be formulated as follows: 

 min (.)
w

J x () 

( 1) ( ( ), ( )) 1,2,...,x k f x k u k k K                        (7)                                                                                                                      

( ) ( ( ), ) 1,2,...,u k G x k w k K                            (8)                                                                                                                           

The performance function J is a functional that evaluates the 

characteristics of the state (.)x  in the feedback system with 

model predictive controller. However, this state quantity 

series (.)x  itself depends on the parameters ( )w  of optimal 

control problem that determines the feedback function. 

So, this problem (5) can be formulated in terms of 

optimization of the parameters w  as follows: 

 min (., ) ( )
w

J x w w                                               (9)                                                                                                                                        

The function   is a composite function that handles the 

values of the functional J  as a direct function of 

parameters w . Therefore, now let us assume that the 

performance function J for the plant state quantity (.)x  

evaluates the overshoot ratio
iM , the steady-state error

iE , the 

settling time
iKs  , and the rise time 

ikr  for every component 

xi of the state quantity. 

     

   

1 2

1

3 4

(.) (.) (.)

(.) (.)

n

i i i i

i

i i i i

J x q E x q M x

q ks x q kr x



  




                (10)                                                                            

 

where  1 2, ,...,i i niq q q ( 1,2,..., )i n  are the weights of the 

respective performance indices. We assume that the operation 

of a system can be repeated multiple times with the parameter 

w  fixed at a trial value. 

4. EXAMPLE  

( 1) 0.95 ( ) 0.5 ( ) 1,2,...x k x k u k k                    (11)                                                                                                                       

The performance function F  for optimal control problem 

aims at a steady state of x =10 at the input u =1. 

2 2( , , ) ( 10) ( 1)x uF x u w w x w u                        (12)                                                                                                               

 ( ) (200 40 -19 ( -1) / ( -1))

/(10 40 )

u x u

u x

u k w w w x k x k

w w

 


           (13)                                                                   
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Fig 3.  Outputs of system in terms of weight parameter 

Figure 3 shows the state transition of the feedback loop when 

MPC is applied to our example for various weight parameters 

of the performance function. As can be seen from the 

diagram, the overshoot, settling time, and rise time vary 

strongly with the weight parameters ( ,x uw w ) of the optimal 

control problem in MPC. 

5. USING A PSO PARAMETER OPTIMIZATION OF 

MPC SYSTEM 

The PSO algorithm is a population-based search algorithm 

[13, 14, 15]. The very simple behavior followed by 

individuals emulates their own successes and the success of 

neigh boring individuals. The emergent collective behavior is 

that of discovering optimal regions of a high dimensional 

search space. In a PSO algorithm, each particle representing a 

potential solution is maintained within a swarm where the 

position of each particle is adjusted according to the 

experience of itself and its neigh bourse. The cost function 

used in this paper is given by equation (10) for tune the 

weight parameter w  of the evaluation function for the 

optimal control problem by setting upper and lower limits to 

restrict the range of the weight parameters. 

min max
min ( ), , 1,2,...,

i
w

J w w w w i n m             (14)                                                                                                       

Here, the parameter w  includes , 1,2,...,xiw i n  

and , 1,2,...,uiw i m . In PSO, all of the particles iteratively 

discover the probable solution. Each particle moves to a new 

position according to the new velocity which includes its 

previous velocity, and the moving vectors according to the 

past best solution and global best solution. The best solution 

is then kept. Each particle in the swarm is iteratively updated 

according to the aforementioned attributes. Assuming that the 
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cost function J  is to be minimized, the new velocity of every 

particle is updated by: 

1 1

2 2

( 1) ( ) ( ( ) ( ))

( ( ) ( ))

id id id id

d id

v t wv t rc Pb t X t

r c Gb t X t

    


           (15)                                                                          

 

For all 1,...,j N , N  is the dimension number, 
ijv  is the 

velocity of the j
th

 dimension of the i
th

 particle, ijp  is  the 

particles’ current position
ijPb  is local best position for 

particles the 
1c  and 

2c  denote the acceleration coefficients, 

1r  and 
2r  are elements from two uniform random sequences 

in the range (0, 1). The inertia weight ω is random numbers in 

the range (0, 1), and t  is the number of generations. The new 

position of a particle is calculated as follows: 

( 1) ( ) ( 1)id id idX t X t V t                                          (16)                                                                                                                                       
 

The local best position of each particle is updated by: 

( )if ( ( 1)) ( ( ))
( 1)

( 1), otherwise

i i i

i

i

Pb t J X t J Pb t
Pb t

p t

 
  


             (17)                                                                                                                   

And the global best position Gb  found from all particles 

during the previous three steps is defined as: 

( 1) arg min ( ( 1))
i

i
Pb

Gb t J Pb t                                (18)                                                                                                                                  

It assures that the global best position will not vanish during 

evolutionary process. 

6. THE MPC SYSTEM AND ITS PARAMETER FOR 

NONLINEAR SYSTEM 

a. FUZZY MODEL 

A discrete-time nonlinear system can be described as follows: 

                    
( 1) ( ( ), ( ))

( ) ( ( ))

x k F x k u k

y k H x k

 



                       (19)                                                                                                       

where ( )u k R  and ( )y k R  are the system input and 

output at time k  respectively, 

( ) nx k R  is the state vector of the system, 
nF R and 

H R  are nonlinear functions. The nonlinear system is 

decomposed into r  subsystems such that each subsystem 

demonstrates a linear or nearly linear behavior. Using the T-S 

modeling methodology [16, 17, 18, 23], a fuzzy quasi-linear 

model, iR  or fuzzy implication, is developed for each 

subsystem. In such a model, the cause-effect relationship 

between control u and output y at sampling time k  is 

established in a discrete time representation. The subsystems 

are defined in the fuzzy regions. , 1,2,...,iR i n . For both a 

controllable and observable system, ( )x k can be expressed as 

function of ( ),y k …, ( 1)y k n  , ( )u k ,…, ( 1)u k n   and n  

represents the order of the system. Therefore, when the 

nonlinear system (1) is investigated around the origin, its 

equivalent system can be expressed as follows [19] : 

1

1

( ) ( 1)... ( 1)

( 1)... ( ) ( )

na

T
nb

y k a y k a y k na

b u k b u k nb k 

      

   
                 (19)                                                       





( ) ( 1),..., ( 1), ( 1)

,..., ( )
T

k y k y k na u k

u k nb

     


                 (20)                                                                                  

 1 1,..., , ,...,
T

na nba a b b  is the referred to as the regression 

vector  is. System (19) can be rewritten as Controlled Auto-

Regressive Integrated Moving Average model (CARIMA) 

[20] 

1 1( ) ( ) ( ) ( )A z y k B z u k                                          (21)                                                                                                                                        

where 
1( )A z and 

1( )B z are polynomials in the backward 

shift operator 
1z  

1
1 2

1
1 2

( ) 1 ...

( ) ...

na

nb

A z a a a

B z b b b





     


   

                                (22)                                                                                                                                        

A T-S model consists of a set of fuzzy rules, each describing a 

local input-output relation as follows: 

1 2

1

1

1

: ( ) , ( 1) ... ( 1)

, ( ) ,..., ( )

( )
THEN ( ) ( ) 1,...,

( )

i i i

i i i

na nb

i

i i

R if y k is M y k is M y k na is

M u k is L u k nb is L

B z
y k u k i r

A z





  



 

  (23)                                                     

where i

jM fuzzy set is corresponding to output ( )y k j  in 

the 
thi  FI, i

pL fuzzy set is corresponding to output ( )u k p in 

the 
thi  FI. 

The system output ( 1)y k   is computed as the weighted 

average of the individual rules consequents: 

1

1
1

1

( )
( )

( )
( 1)

ir

i i
i

r

i

i

B z
u k

A z
y k












 



                                  (24)                                                                                                                                   

i is the normalized membership function of the inferred 

fuzzy set 
iM where 

1

na
i i

j

j

M M


  and 
1

1
r

i

i




 .  

The computing of the values for r  model parameters in Eq. 3 

is obtained by using weighted recursive least squares method 

to the N  sample data ( ( ), ( )x k y k   as follows [21]: 

( ) ( 1) ( ) ( ) ( ) ( 1)T

i i i i ik k L k y k k k                (25)                                                                                                           
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( 1) ( )
( )

1/ ( ) ( 1)

T

i T

i

P k k
Q k

k P k



  




 
                               (26)                                                                                                                              

( ) ( 1) ( ) ( ) ( 1)i i i iP k P k Q k k P k                           (27)                     

for 1,..., , ( 1)k N P k  is a covariance matrix and ( )Q k  

referred to the estimator gain vector. A common choice of 

initial value is to take (0) 0i   and (0)iP I  where   is a 

large number. The synthesis of the proposed fuzzy controller 

is based on the architecture of the obtained fuzzy model. The 

controller has the following form [22]:  

             1

1

( )

( )

r

i i

i

r

i

i

u k

u k














                                   (28)                                                                                                                    

b. ALGORITHM 

The proposed predictive control algorithm is summarized as 

follows: 

Phase 1: Construction of the fuzzy model using FCM 

algorithm 

Step1. Given data  1 1( , ),..., ( , ) 1,...,k kS x y x y k N  , set 

1m  and the metric matrix A I . Select a termination 

threshold 0   and initialize 0U (e.g. random).  

Repeat for 1,2,...l   

Step2. Calculate the cluster centers as follows: 

1

1

1

1

( )

1,2,..., 1,2,...,

( )

N
l m

ik k
l k
i N

l m

ik

k

x

v i r k N













  



           (29)                                                                                               

m  is the fuzzy weighting exponent.  

Step 3. Calculate distances as follows: 

( ) ( )l T l

ik k i k ix v A x v                                                (30)                                                                                                         (33) 

Step 4. Update lU  with ik satisfy: 

2

1

1

1
0

( )

0 otherwise

l

ik ikr
ik ml

ik
j jk

if

U

 








 


 



   (31)                                                                               

Until 
1l lU U    then stop. Otherwise, set 1l l   and 

return to Step 2.C 

Step 5. Calculate values for  r  model parameters 
r

i  using 

WRLS method.  

Phase 2: Parameter optimization for model predictive 

control 

Step 0. The weight parameter (0)w  is specified, Initialize 

the particle swarm and  0l   is set. 

Step. 1. Calculate the plant state for each cluster according 

to Eq. (7) with a fixed initial state (1) 1,...,ix i r . 

Step 2. The evaluation score  (., (1))i i iJ x w for each cluster 

is calculated.  

Step 3. We use the PSO updating formula (17) and (18) with 

regard to the upper and lower constraints on the weight 

parameters. 

 argmin ( ( )) 1,2,...,
p

pbest p

w

w Pb w h h l                (32)                                                                                                                     

 argmin ( ) 1,2,..,
pbest

gbest pbest

w

w Gb w p P                (33)                                                                                                                 

Step 4. Calculate the control state for each subsystem.   

  ( ) -1 , , 1,..., 1,...,gbest

i i i iu k G x k w i r k N              (34)                                                                                                                   

Step 5.  The trial-and-error search is finished when the 

maximum number of iterations maxl  is met. 

Step 6.  Calculate the overall control according to Eq. 31 

 

 
7. SIMULATION RESULTS 

( )H k

( )sQ k

a

( )Q k

( )i k



 
Fig.4.  The surge tank system 

The behavior of the surge tank system, shown in Figure 4,  

( )Q k is the feed rate, ( )i t  is the supply current of the pump, 

( )H k  is the liquid level in the tank, ( )sQ k is the output Flow, 

a is the section of the output channel, This system can be 

represented by the following differential equations: 

0 1( ) ( 1) ( ( 1) ( 1))Q k Q k Te k Q k k i k                    (35)                                                                                                                

The change in water level in the tank is given by: 
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( ) ( ) ( 1) ( ( 1) ( 1))   (36)sV k AH k H k Te Q k Q k      

  where : 

( ) 0.6 2 ( ( ) )s sQ k a g H k H                                     (37)                                                                                                                       

A is the section of the tank and 
sH  is the water level in the 

output channel. 

Table 2.  Specification of the surge tank 

Parameter Description 
Normal operation 

condition 

0H  Initial value of 

tank level 
0.15  m  

sH  
Initial value of the 

output channel 

level 

0.015 m  

a  
Section of the 

channel output 0.0001
2m  

A  
Section of the 

tank 0.04
2m  

0Q  the initial flow 0.0001
3 1m s  

0k  Constant 1  

1k  Constant 0.1  

We suppose that the subsystems are in the third order. We 

choose the degree of 1( )A z  and 1( )B z  

respectively 3na  , 2nb  , the predictive step size is Ny =8, 

while the control step size is Nu =5. The iteration number for 

chaos searching is 75 and the iteration number for PSO 

searching is 350. 

The model consists of two rules of the form: 

1 1 1

1 11

12 13 11 1 12 1

: IF is THEN H ( ) ( 1)

( 2) ( 3) ( 1) ( 2)

R i Q k a H k

a H k a H k b i k b i k

  

      
 

2 2 2

1 21

22 23 21 1 22 1

: IF is THEN H ( ) ( 1)

( 2) ( 3) ( 1) ( 2)

R i Q k a H k

a H k a H k b i k b i k

  

      
 

For the analysis of this behavior, the reference signal changes 

as follows: 

0.2 0 30

0.1 30 60
( )

0.3 60 90

0.4 90 1200

r

k

k
y k

k

k

 


 
 

 
  

 

The performance function selected for each cluster as follow : 

2 2( , , ) ( ) ( ) , 1,2
i xi i r ui i

F x u w w H y w u i             (38) 
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Fig 5. Surge tank response 
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Fig 6. Control signal 
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Fig 7. System response with disturbance of our method 

Table 3: Comparison of performance of the MPC, MPC-PSO and our method 

 

 
Yousuf et 

all (2010) 

Paul Mc 

Namara(2013) 

Our 

method 

RiseTime 0.8111 0.9820 0.7402 

SettlingTime 1.9936 11.0788 5.6402 

Overshoot 0.8388 2.6922 8.0804 

Peak 0.2017 0.2055 0.2162 

ESS 0.00 0.00 0.00 

Table 3 shows the performances obtained by each method 

NMPC (Yousuf et all, 2010), MPC-PSO (Paul Mc Namara, 

2013) and our method. In each interval time, we have 

changed the reference for evaluating each method to control 

our nonlinear system. Comparison  was  made  between  the  

proposed  method and the other methods shows  the  results  

during  the  120  iterations (Figure 5). The red line denotes 
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the output of the T–S fuzzy model based on our method. The 

green and blue lines denote the outputs of the T–S fuzzy 

models based on MPC-PSO and NMPC, respectively.  The 

proposed method shows obvious advantages over that of old 

methods. A comparison of control results between the three 

strategies are demonstrated in figure 5.  The simulation 

results of different methods are given in Table 3. Same, these 

results demonstrate the superiority of our MPC method. So, 

one can see that the overshoots of the new method are much 

smaller than that of the other methods (NMPC, MPC-PSO), it 

is less than 30% compared to MPC-PSO and almost lower 

10% compared to NMPC. And we can note also that the 

performance of our method is better than those of other 

methods in terms of Rise time, setting time, overshoot and 

peak time. Figure 6 shows the control signal obtained with 

our method. Besides, this control input is very smooth.  

Figure 7 shows that the algorithm has an enormous capacity 

for disturbance rejection.  All these previous results clearly 

indicate that the proposed controller outperforms the other 

methods (NMPC and MPC-PSO) taking into account the 

responses by changing reference signals. Therefore, we can 

see that our proposed controller still holds the best 

performance with and without disturbance. Thus, it confirms 

the usefulness and robustness of this proposed controller.  

8. CONCLUSION 

This paper presents a model predictive controller MPC based 

on particle swarm optimization for T-S fuzzy modeling. In 

particular, we proposed a method of tuning the weight 

parameters based on the optimal control and of the 

performance function according to the output state quantities 

detected from the response of the system. The results showed 

that the proposed approach is efficient to tune MPC controller 

for nonlinear system. The effectiveness of the proposed 

controller has been tested in comparison with MPC-PSO and 

NMPC methods through the simulation studies of two 

benchmark problems. Results analysis show that the proposed 

method led to an improvement of the system characteristic 

such as overshoot, settling time and system response speed 

than the other recently reported methods in literature. 
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