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Abstract— the problems of localization target and estimation in 

Wireless Sensor Networks (WSNs) have received considerable 

attention recently, driven by the need to achieve high localization 

accuracy, with the minimum cost possible. A large range of 

proposed approaches regarding the localization area have 

emerged, however most of them suffer from either requiring an 

extra sensor, high power consumption, or offer high localization 

error. 

The main focus in this work is on the localization technique and 

the estimation of outdoor positioning which is based on a RVI 

algorithm. The particle filter and the extended kalman filter have 

been implemented with the RVI algorithm to predict and 

calculate the location of targets where the ultimate aim is to 

minimize the error distance. The simulation results demonstrate 

that the suggested combination, for the sake of anticipated 

accuracy in localization, can be achieved even by the use of few 

anchor nodes. 

  

Keywords— Estimation of location, ZigBee, Link Quality 
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I. INTRODUCTION 

Several approaches based on the communication between 

sensors nodes have been proposed and developed to achieve 

localization in WSNs [1]. Most of these techniques rely on 

wireless technologies, such as, WLAN, RFID, ZigBee, and 

UWB. Beside several signal metrics have been investigated 

like basic node to node distance, angle, or numbers of hops 

[2,3]. Normally, the nodes used in a wireless sensor network 

have very little resources and need techniques that utilize 

small resources without the need for extra hardware. 

Therefore, signal-strength-based methods which generally 

employ measurements of received signal strength indicator 

(RSSI), provided by most wireless network devices, present a 

good solution. According to that, our localization system is 

based on signal strength-based methods which employ RSSI 

measurement; these methods do not affect our model since it 

doesn’t require additional material or increments in energy 

consumption, size, or cost [2]. Moreover, (RVI) the 

ratiometric vector iteration [4] is one of the more prevailing 

algorithms. Consequently, RVI appears as a very convenient 

option for our localization system which ensures the 

satisfaction at cost, energy and physical constraints of the 

problem. Moreover, instead of the usual received signal 

strength indication used in this localization algorithm, we 

planned to use the link quality indicator (LQI) measurement, 

which is a metric introduced in IEEE.802.15.4 that measures 

the error in the incoming modulating of successfully received 

packet for distance estimation . 

LQI-based localization technology has become a common 

method in WSN outdoor positioning because of its simple 

hardware description and easily acquired indication signal. 

However, it is worth-noting that it is yet flawed in terms of 

precision, sensitivity and usability, a clear-cut fact which 

significantly limits and constrains its effective application. 
This paper is basically about the identification of localization 

techniques and the estimation of outward positioning, which 

are mainly based on a RVI system [5] and indistinct filtering. 

The purpose of this work is to reduce the estimation error 

in order to set up a real-world application that uses a ZigBee-

based wireless sensor network (WSN), to track objects and 

people in confined spaces and communicate their information. 

Most large-scale wireless sensor network applications share 

common characteristics and services such as low power, 

limited memory energy constrained due to their small size and 

deployment in extreme environmental conditions. 

Traditional methods are based on linearized models and 

Gaussian noise approximations so that the Kalman filter can 

be applied [6]. Research is focused on how different state 

coordinates or multiple models can be used to limit the 

approximations. In contrast to this, the particle filter 

approximates the optimal solution numerically based on a 

physical model rather than applying an optimal filter to an 

approximate model. 

 

II. RELATED WORK 

To satisfy the needs of energy of our localization system, 

the ratiometric vector iteration (RVI) was chosen as 

localization algorithm. This method takes into account 

the limitations of WSN nodes for computing capacity and use 

of energy, to obtain good location accuracy with 

a reduced cost of communication. The algorithm is based on 

the estimates of distance ratios rather than absolute distances 

that are often difficult to calculate. By updating the estimation 

of location of the mobile node in an iterative way, the RVI 
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precisely locates the target with the only participation of three 

sensors. 

Also, instead of the usual received signal strength 

indication (RSSI) as required by the algorithm, since no 

additional hardware was required for distance estimation, we 

use the link quality indication (LQI) that have a better 

approach to estimating the distance in WSNs and which is a 

standard feature of the ZigBee protocol. Thus the RVI 

algorithm was implemented and modified to work with LQI 

measurements. 

The localization algorithm implemented, updated in an 

iterative way the estimated distance of the mobile node 

according to the distance between each anchor and the sensor 

node mobile. From the perspective of refining its estimates, 

we used a co-operative approach. So, not only distance from 

anchors but also from neighboring sensors were used in the 

algorithm to adjust cooperatively their locations and give a 

more accurate result. [5] 

This section mentions the two conventional methods: 

Extended Kalman Filter and particle filter, which are a 

localization method based on pre-measured data. 

 

A. Extended kalman filter 

 The Kalman filter is a recursive predictive filter that is 

based on the use of state space techniques and recursive 

algorithms; it estimates the state of a dynamic system. This 

dynamic system can be disturbed by some noise, mostly 

assumed as withe noise. To improve the estimated state the 

Kalman filter uses measurements that are related to the state 

but disturbed as well. 

In many cases, interesting dynamic systems are not linear 

by nature; so, the traditional Kalman filter cannot be applied 

in estimating the state of such a system. In these kinds of 

systems, both the dynamic and the measurement processes can 

be nonlinear or only one of them. In this section, we describe 

the extended Kalman filter (EKF) [7]. 

In the monitoring process, the Kalman filter looks for an 

object when it moves; that is, it takes the information about 

the state of the object to time. Then, it uses this information to 

predict where the object is located in the next frame. he 

position of the object is then corrected considering the 

prediction and observation as well [8]. 

1) Equation of Extended Kalman Filter 

The Extended Kalman Filter is suitable to determine the x and 

y-position of the mobile target with the measured distances to 

the anchors. Using the trilateration method, the anchor 

distances di with i ∈ {1, 2….9} are calculated as follow: 

   
2 2

i i id x x y y   
                  (1) 

Where (    ,    ) is the coordination of beacon i .   

Recall the equations of the extended Kalman filter: 
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Where A, and H are Jacobien matrices with the partial 

derivatives 
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The state vector Xk contains the target position to be 

estimated: 

                     
( , )T

kX x y
                            (9) 

The optional input control vector Uk is set to zero. The 

observation vector Yk represents the observations at the 

given system and defines the entry parameters of the filter, 

in this case the results of the range measurements. The 

process function f relates the state at the previous time 

step k to the state at the next step k + 1. The measurement 

function h acts as a connector between Xk and Yk. 

Referring to the state estimation, the process is 

characterized with the stochastic random variables   and 

     representing the process and measurement noise. 

They are assumed to be independent, white and normal 

probably distributed with given covariance matrices Q 

and R. 

The state transition matrix A arises from the respective 

equations, the matrix becomes:  

                                    
  
  

                                (10) 

 

 The related Jacobien matrix H describes the partial 

derivatives of h with respect to Xk  : 
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Given that h contains non-linear difference equations the 

parameter (d1, d2 ……d9) as well as the matrix H must 

be calculated newly for each estimation.   

 

B. Particle filter  

The particle filter is a sequential Monte Carlo algorithm, a 

sampling method for approximating a distribution that makes 

use of its temporal structure. It does assume the development 

of the probability density function (pdf) of a dynamic 

system’s true state from noisy observations over time. Based 

on [8] and [9] a general description of the Bayesian inference 

process will be given.  

In particular, we will be concerned with the distribution 

             here    is the unobserved state at time t, and       

is the sequence of observations from time 0 to time t. In the 

previous lecture on Kalman filters, this distribution 

             was a multivariate Gaussian due to assumptions 

regarding the transition model              and sensor 

model             . The particle filter is more general, and 

makes few assumptions on these models [10]. 

Without restrictive linear Gaussian assumptions regarding the 

transition and sensor models, 

             cannot be written in a simple form.  as an 

alternative, we will represent it using a collection of N 

weighted samples or particles, { xt (i) , wt (i)     
 , where wt (i) 

is the weight of particle xt (i) , a particle representation of this 

density: 

                                                                 (12)  

Consider the integral that needed to be performed at each 

filtering step from the previous lecture:   

                       

                                                                             

(13)  

As before, we are using this recursive definition to compute 

the filtered distribution              given the 

distribution                    with a particle representation 

for                , Equation 13 can be approximated as:  

 

                                                         (14)                        

 How do we create the “right” set of particles for 

representing the distribution               ? One answer is to 

use importance sampling. The particle filter can be viewed as 

operating as an importance sampler on this distribution. The 

technique of importance sampling is a method for generating 

fair samples of a distribution P(x). Suppose P(x) is a density 

from which it is difficult to draw samples, but it is easy to 

evaluate P(xi) for some particular xi . Then, an approximation 

to P(x) can be given by:  

                                              
                         (15) 

 Where              w (i) = P(x)/ q(x (i))                                     (16) 

Make a note of that any distribution q(·), known as a 

proposal distribution, can be used here.  However, with 

such a uniform sampling strategy, most samples will be 

wasted, having small w (i) values. Instead, we use a more 

direct proposal distribution, our approximation to 

               (the integral in Equation 13). With this 

proposal distribution, the weights w (i) end up being 

relatively simple due to cancellation. 

 Concretely, the particle filter consists of the following 

steps (from [10], equivalent to Algorithm 4, SIR, in [11]):  

 Represent N samples xt (j) from the proposal distribution 

q(xt): 

                                                              (17)                     

 

by selecting a random number r uniformly from [0, 1], 

choosing the corresponding particle i, and then sampling 

from                 . This transition model is typically a 

linear Gaussian model, but any model from which 

samples can easily be drawn will suffice. 

Set the weight wt (j)  as the likelihood:  

                       wt(j) =P(yt |xt (j) )                                 (18)      

 

The samples {xt (j) } above are fair samples from 

P(xt |z0:t−1). Reweighting them in this fashion accounts 

for evidence zt . 

 Normalize the weights {wt (j) }: 

                                    
      

        
                                (19)      

Another point is that there is an optimal proposal 

distribution, which is not the one used here. The optimal 

proposal distribution, minimizing variance in weights 

w(i) , turns out to be p(xt |xt−1, zt).  

The most important property of the particle filter is its 

ability to handle complex, multimodal (non-Gaussian) 

posterior distributions. However, it has difficulties when 

xt is high dimensional. Effectively, the number of 

particles N required to adequately approximate the 

distribution grows exponentially with the dimensionality 

of the state space.  

 
Fig 1 : Illustration of one cycle of the Particle Filter 
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III. EXPERIMENTS AND RESULTS 

A. Material 

The whole system contain a wireless sensor network based 

on the ZigBee protocol, a set of ZigBee boards miniaturized 

and Jennic JN5139 wireless [14] microcontrollers that two 

different models are used. JN5139-Z01  the M00/M01 with 

integrated antenna or SMA connector for M00 for M01 and 

high power JN5139-Z01-The M02 with a SMA 
omnidirectional antenna Titanis of Antenova. The JN5139 is a 

device with low power consumption and low cost (1.2 uA in 

standby mode) with a 32-bit processor and a 2.4 GHz 

IEEE802.15.4/ZigBee compatible transceiver. The transceiver 

of JN5139 provides an LQI measure which is used to estimate 

the distance. 

Then, the ZigBee network has three types of devices, 

namely, the network coordinator (implemented with a 

JN5139-Z01-M02 device) connected through a UART inter- 

face to a PC in which data was registered and the localization 

algorithm was executed; the anchor nodes or routers (imple- 

mented with JN5139-Z01-M02 devices) which were placed in 

fixed and known locations; the mobile node (implemented 

with a JN5139-Z01-M00/01 device) which was worn by the 

user and the problem consists in determining its location. 

B. Parameters exploration  

The performance of the proposed localization method was 

evaluated using a network composed of anchors nodes to 

properly cover a surface of 120m × 120m. The algorithm was 

implemented in Matlab. We used our system for the 

localization of, respectively, 9, 16, 25 and 49 different anchors 

nodes. 

In our first experience [5] we implemented EKF with 

white noise after the estimation RVI algorithm using the 

position of targets and their estimates as parameters of 

extended Kalman filter that overcomes the linearization of the 

model prediction and measurements. In this work we propose 

a combination between the RVI system and the particle filter 

for locating the sensor node based on LQI provided by JenNet 

protocol. The goal of our approach is the minimization of the 

localization error so as to improve location accuracy. 

 

 

Fig 2: Estimation of position with the RVI - Extended Kalman Filter 

 

Fig 3: Estimation of position with the RVI- Particle Filter 

To evaluate the performance of the filter, Figure (2) and (3) 

shows the output filtered x-y positions of the targets station 

illustrated with respect to the actual path of targets station. 

 

C. Result 

TABLE I 
COMPARISON OF DIFFERENT METHODS 

Number of 

beacons 

Methods of estimation  

RVI RVI_KF RVI_PF 

9 9.51 0.66 1.42 

16 9.23 0.74 1.4 

25 7.83 0.94 1.13 

49 5.51 1.20 1.15 

63 5.35 1.4 1.10 

81 5.16 0.95 1.35 

117 5.28 0.88 1.47 

169 5.23 0.82 1.22 

 

The localization accuracy was estimated in four different 

scenarios. In all of them, the localization error was tested in 

20 different locations of anchors. As presented in table 1 , the 

RVI based system offers an average localization error of (~ 

7.83) meters depending on the number of beacons, while the 

RVI filtering systems proposed in this paper 

achieves an average localization error of (~0.76) and (~1.32) 

meters as presented in Figures (4). Therefore, the presented 

work in this paper achieves better localization accuracy than 

RVI_E. Kalman filter. Also it achieves much better 

localization accuracy in RVI_ Particular filter when the 

mobile target moves from one point to another with different 

number of beacons. 
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Fig 4: Estimating the location for different systems 

 

IV. CONCLUSION 

 

In this paper we proposed a comparison of tow filter 

based on RVI algorithm. The presented work in this paper 

has been estimate the locations of targets with the 

combination of RVI algorithm and the tow filter proposed 

(extended kalman filter and particle filter), the experimental 

results show that the position accuracy of the estimation is 

1.3 m obtained with particle filter and almost 0.76 m 

obtained with extended kalman filter, the both of them are 

minimize the error distance. Moreover, the localization 

system was performed taking key aspects into accounts such 

as cost, energy consumption and independence from 

additional hardware.  

 For future work we aim to expand our proposed system 

and combine the tow filter to obtain the advantage of the 

particle filter in term of robustness and the extended kalman 

filter in term of precision. 
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