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Abstract— Internal model control (IMC) is an established 

technique in continuous-time linear control for  SISO an MIMO 

fully-actuated systems but has not been developed for discrete-

time  under-actuated systems. In this paper we present a new 

IMC structure to the multivariable under-actuated systems, 

which is based on a specific inversion principle of the model 

plant. Simulated examples are presented to prove the 

effectiveness of the proposed control method to ensure set-point 

tracking, stability and disturbance rejection.  

 

Keywords— Internal model control; under-actuated systems; 

stability; disturbance rejection; specific inversion ;  

I. INTRODUCTION 

Under-actuated systems offer challenging control problems 

to solve operational inconveniences with great interest from 

theoretical point of view. Non-square system is a common 

industrial process in fields of the practical engineering. The 

number of the input variables does not equal to that of the 

outputs, e.g. This class of systems are abundant in real life; 

examples of such systems include, but are not limited to, 

surface vessels, spacecraft, underwater vehicles, helicopters, 

road vehicles, mobile robots, space robots and under-actuated 

manipulators[12,13] . 

In dispite of their generality in industry, the analysis and 

control for under-actuated systems need  further research. In 

recent years, much works focus these field [2,6,7]. In order to 

contribute to this research area, we propose in this paper to 

apply an interesting Internal Model Control approach (IMC), 

to a class of discrete multivariable under-actuated systems.  

Control methodologies such as dynamic inversion and Moore-

Penrose control require an inversion of the input influence 

matrix. However, if the transfer function system matrix is 

non-square direct inversion is not possible [16]. 

During the early to mid 1970, internal model control was an 

active research area starting with [5]. Specifically, treats the 

disturbance rejection problem  and ensure stability. 

The specificity of this IMC structure resides in the use of a 

special controller which is an approximate inverse of the 

model plant. The use of this controller ensures a high level of 

robustness [1,3,4,5,6]. 

The analysis of the stability of elements of the internal model 

control has been conducted in the literature by numerous 

fundamental researches that depend on the type of systems 

considered and the scope. There are many methods studying 

the stability of linear discrete multivariable systems. These 

stability criteria can be classified into two main categories 

namely the frequency criterion using the notion of the 

characteristic equations and the time criterion based on 
Lyapunov theory.  

All of the results in [1-5] on internal model control are 

confined to continuous-time systems. Analogous results for 

discrete-time systems are not available in the literature.   

The purpose of this paper is to propose a new IMC method 

control for the discrete-time under-actuated systems. In the 

controller procedure, a simple design is presented such that 

initial conditions are taken into account; the controller has a 

good performance of tracking ability, excellent robustness and 

good control performance [8]. 

The influence of the model parameters and external 

disturbances will be also discussed. 

In the present paper, we develop an alternative approach to 

internal model control that is directly applicable to discrete-

time under-actuated systems . Using this approach, we 

simultaneously solve the command following and disturbance 

rejection problem in discrete-time. We also present 

simulations examples to prove the effectiveness of the 

proposed control method.  

II. PROBLEM FORMULATION 

The basic IMC structure was designed for linear SISO 

systems and afterwards for linear MIMO fully-actuated 

systems [3,11,14]. The IMC structure of multivariable 
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processes is given in Fig. 1, where (z)C  is the transfer matrix 

of the  controller, (z)M  is the transfer matrix of the plant 

model. 
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Fig.  1 IMC structure for multivariable discrete fully-actuated systems 

However, the corresponding responses speed of the system 

output will be decreased. Hence, in order to improve the 

robustness while obtain a fast response speed, a first-order 

filter ( )F z is recommended to be added in the basic IMC 

structure as shown in Fig. 1 [1,3,10]. 

Where 

r is the reference signal; a disturbance signal affecting the 

system; u the manipulated input signal, applied for both of the 

process G  and its model M ; and the signal d represents the 

calculated difference between the process output signal y and 

the model output one 
my . 

When the model is perfect, we have ( ) ( )M z G z , the signal 

d is reduced to the perturbation signal .  

The control structure is then equivalent to an open loop 

scheme.  From Fig. 1, the following equation can be derived 

without taking into account the robustness filter (z)F I . 

 

my GFC I CFM r

u C CF
                                          (1) 

 

The Internal Model Control (IMC), is stable if and only if the 

process, the process model and the controller ( )C z  are stable 

in open loop [5]. The realization of an IMC controller that 

equal to inverse of the model expression is essential in order 

to ensure perfect set-point tracking. 
 

The synthesis of a controller C is the inverse of the chosen 

model if it's realizable in order to ensure perfect set-point 

tracking. This inversion presents the main problem of the IMC 

approach for linear discrete over-actuated systems. In fact,  

the realization of the direct model's inverse is difficult or not 

possible for most physical systems.  

 

The model inversion is impossible too in the case of discrete 

under-actuated systems, because for them such the number of 

control inputs is equal to n  and the number of outputs is equal 

to m  ( m  is less than n ), the transfer function of the process 

G  is of dimension ( )m n making it a rectangular matrix 

where reversal is impossible. ( )G z is a process with ' 'n  

inputs and ' 'm outputs ( )n m  given as: 

 

11 12 1

21 22 2

1 2

(z) (z) (z)

(z) (z) (z)
( )

(z) (z) (z)

n

n

m m mn

G G G

G G G
G z

G G G

                          (2) 

 

The matrix M  must be chosen close the G , but as we 

explained previously, the inversion problem requires that the 

matrix M be square.  In order to remedy this problem of 

inversion of model ( )M z , it is necessary to use inversion 

techniques, we quote for example methods, virtual outputs [9-

11], non-square effective relative gain (NERGA) [15], Moore- 

Penrose pseudo-inverse technique [16]. 

 

The objective of this paper is to solve this problem of 

inversion of  model and then we explain our proposed solution 

by describing the changes we have introduced to this IMC 

structure so that it becomes applicable to linear discrete under-

actuated systems. This control problem includes both 

disturbance rejection and influence of the model parameters. 

III. THE CONTROL STRUCTURE DESIGN FOR DISCRETE UNDER-

ACTUATED SYSTEMS  

 

In this section, we propose firstly to modify the basic IMC 

structure so that it becomes applicable to under-actuated 

systems. Secondly we design an approximate inverse of the 

model plant [10].   

A. The changes made to the basic IMC structure 

 

We propose a simulation synoptic for the control of the 

discrete multivariable under-actuated systems by the internal 

model control represented by the figure 4. 
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Fig.  2   The propose  IMC synoptic  for  discrete under-actuated systems 

 

The system ( )G z  chosen in this paper is a MIMO under-

actuated system, it’s non square so ( )M z is also, to solve this 

problem is added ( ( - ))m m n transfer functions to the matrix 

( )M z in order to make it a square matrix of 

dimension ( )m m ; therefore, the transfer matrix of a linear 
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discrete under-actuated systems can be square and the 

inversion model can be realised. The transfer matrix that will 

add to make the under-actuated systems square is its size 

(( - ), )m n m . This matrix has the following form: 

 

1, 1 1, 2 1,m1 1

2, 1 2, 2 2,m2 2

, 1 , 2 ,

(z) (z) (z)(z) (z)

(z) (z) (z)(z) (z)

(z) (z) (z)(z) (z)

n n n

n n n

m n m n m mm m

M M My u

M M My u

M M My u
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 
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    
     

    

(3) 

 

The ( ( - ))m m n  functions can be chosen first-order transfer 

function in order to make the transfer matrix of the non-square 

system, up to have a square transfer matrix that can be 

reverse, to simplify the study and not affect the system 

stability [10]. 

On the other hand ,  a new function will be used to elimnate 

the  excess control inputs acting on the process by the use of 

usual arithmetic operators. 

B. Controller design 

The IMC controller design by using the inversion method 

proposed in [10], is extended to linear discrete-time 

multivariable under-actuated systems, so we can obtain:  
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Fig. 3 Structure for model  inversion 

 

1A  reversal of the matrix is an invertible square matrix; it 

must ensure the stability conditions of the controller.  

The expression of IM controller  can be obtained :  

  1

m 1I (z)

A
C z

A M



                                                   (4) 

                                                   

Where mI is the identity matrix; 1A  is a diagonal matrix; its 

coefficients are selected to satisfy the conditions of stability 

[16,1,5]. In order to better explain our study, 1A can be 

expressed by:  

 

1 mI ,A a a                                                        (5)  

With such a choice of 1A , and if we choose a high value of a , 

we obtain a small value of 
1

a
which allows to approximate 

 
1

1

1
M z

A


 with 
1(z)M 
. 

The stability of the controller C(z) depends of stability of the 

process control and of the model. After the equation (4), the 

controller is stable if all the poles of the characteristic 

equation are strictly lower module 1. Since M  is stable, a 

suitable choice of the matrix 
1A  ensures therefore the 

controller stability [10,12,14].  

IV. SIMULATION RESULTS  

In this part, we discuss the influence of the external 

disturbance and  the perfection or not of the modeling.  

 

Let's consider a (2 1)  stable process with one control u1 

and two outputs y1 and y2, is described by the following 

transfer matrix G . 

 

1

2

G
G

G

 
  
 

                                                                 (6)  

 

The process outputs is given by 

 

 1 1

1

2 2

y G
u

y G

   
   

   
                                                                (7) 

 

 Therefore and we as explained previously, the model transfer 

function is of dimension (2 2)  in order to ensure 

invertibility conditions of the matrix M. The model is 

expressed by the following transfer matrix . 

 

11 12

21 22

M M
M

M M

 
  
 

                                                              (8) 

 

The model outputs is given by 

 

1 11 12 1

2 21 22 2

m

m

y M M u

y M M u

     
     
    

                                                 (9) 

 

 In order to test and validate the proposed design controller 

presented  in Fig. 3 of multivariable under-actuated systems, 

two cases will be considered.  In the first one, we show the 

influence of model parameters, and in the second one, the 

influence of external disturbances. 

Our process transfer function (s)G of study is shown as 

follows:  

2

2

2

3 2
( )

0.8

1.5 0.8

s s
G s

s s

 
  

  
 
   

                                              (10) 

We can apply the study developed in [10], therefore the 

bilinear method of discretization are applied for the process 

G(s) and the process model M(s). The application of Jury 

stability criterion allows us to assess the necessary and 

sufficient condition of the controller stability.  
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For a simpling frequency  0.2eT s , the closed-loop system 

defined by Fig. 1 is stable for a gain value 

110 70m mI A I    . 

A. Case of perfect and imperfect modeling 

IMC also allows us to introduce the notion of a perfect 

controller as an important theoretical tool. 

When the model is perfect, the transfer function of model is 

expressed as :  

122

222

2

3 2

0.8

1.5 0.8

M
s s

M

M
s s

 
  

  
 
   

                                               (11) 

The added functions 
12M and 

22M  can be chosen first-order 

transfer function in order to make the transfer matrix of the 

non-square system, up to have a square transfer matrix that 

can be reverse, to simplify the study and not affect the system 

stability. In the case the transfer function of model is given by 

2

2

2 3

13 2

0.8 2

11.5 0.8

ss s
M

ss s

 
  

  
 
   

                                              (12) 

For a unit step reference applied at 0T s , the simulation 

results for a gain 1 64A   are the following: 
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Fig. 4 Evolution of The outputs signals y1(t) and y2(t)  of the sampled 

system with perfect modeling  

When the model is not perfect, the transfer function of model 

is expressed as :  

2

2

2 3

14 2

0.8 2

13 0.8

ss s
M

ss s

 
  

  
 
   

                                                (13) 

The IMC structure is based on an accurate linear model but 

modeling can't be too precise. Such a model can't provide a 

perfect description of the process behaviour, so we study the 

case of an imperfect model and test its parameters effects on 

the system evolution. From Fig. 5, we can see that, the system 

answers quickly and the reference signal is assured. 
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Fig. 5 Evolution of The outputs signals y1(t) and y2(t)  of the sampled 

system with not perfect modeling  

We have demonstrated the robustness of the proposed 

approach for internal model control of discrete multivariable 

process under-actuated when the system and its model may be 

different. This controller achieves perfect set-point 

satisfaction despite  model/plant mismatch ( ) ( )M z G z . 

B.   Case of external disturbance 

To testify the robustness of the system, a step disturbance was 

added at, t=15s. The disturbance signal is expressed by 

equation (14).  
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                                                                                      (14) 

The case of  not perfect modeling is considered. The model is 

expressed equation (12). 

The simulation results are shown in Fig.6. We can see that the  

proposed IMC of under-actuated systems , has a good 

performance on tracking given value and overcoming 

disturbance, but also has good stability and control quality 

both.  Moreover, the designed controller is easy to compute. 
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Fig. 6 Evolution of The outputs signals y1(t) and y2(t)  of the 

sampled system with not perfect modelling and external disturbance 

 
 

V. CONCLUSIONS 

For the multivariable system with the number of inputs is 

less to that of outputs are habitually met in system industries, 

we proposed a new method based on internal model control 

for under-actuated system has been presented in this paper. 

The simulation results show that this method has better 

control performance and good robustness than other control 

methods for under-actuated process. 

IMC structure disposes of the closed-loop stability issue 

altogether and thus gives the designer the opportunity to 

address the central issues of control system performance and 

robustness directly. 
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