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Abstract— This paper provides a new technique to identify 

coherent machines groups of electrical power systems swinging 

together in frequency and phase. Modal analysis of swing 

dynamics under large disturbances in multi-machine networks is 

performed based on a mathematical technique named Nonlinear 

Koopman Mode Analysis. The study is conducted on two tested 

networks: the Kundur 2-area 4-machines power system and the 

IEEE 9-bus 4-machines power system. A comparison of the 

Discrete Fourier Transform analysis is carried out with the 

nonlinear Koopman mode analysis in terms of frequencies and 

coherency identification. This comparison reveals that the 

Koopman modes extract spatial single-frequency oscillations and 

may identify coherent swings dynamics.  

 

Keywords— Electrical Power Systems, Nonlinear Oscillations, 

Koopman Mode Analysis, Transient stability, Coherency 
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I. INTRODUCTION 

Electrical power grid is the most complex dynamical man-

made system there is. It experiences various types of 

oscillations [1] [2] which are excited by disturbances. As 

examples of oscillation modes, we distinguish the inter-area 

modes and the local generator modes [3].  

 

Coherency identification is one of the essential applications 

of modes identification. For transient stability analysis, a 

group of synchronous generators is coherent if these 

generators swing together in frequency and phase. There are 

many objectives for identifying coherency, such as the 

reduced-order models development, the assessment of on-line 

dynamic security and the analysis of electrical power system 

instabilities [4]. Many researchers have developed methods for 

the identification of coherency. In [5] the author used the time 

domain simulation of the linearized power system models for 

the analysis of coherent generators subject to disturbances. The 

authors in [6] [7] applied time-scale separation used to power 

system models for singular perturbation studies. In [7]–[10] 

the authors developed grouping algorithms by using slow 
coherency to identify coherent generators groups in power 

system. In [11]–[13], the authors studied the coherency by the 

use of linear and decentralized systems theories such as the 

weak coupling idea. The authors in [14] [15] used the energy 

function in order to identify coherent generators.   

 

Large-scale electrical networks have various types of 

nonlinearities. The modeling and the analyzing of their 

dynamics are very difficult. One more traditional mode notion 

usually carried out which is developed in electrical power 

system stability analysis was based on the small-signal 

dynamics which investigate linearized equations around 

equilibrium [16] [17]. However, large disturbance will pull 
network operating point far away from the stable equilibrium 

point. Nonlinear interactions will be disregarded from the 

analysis. Hence, linear approximation may be invalid. 

Therefore, developing new technique for identifying modes 

without relying on linearization is a recurring need. Recently, a 

mathematical technique of nonlinear modal decomposition has 

gained increased attention as a new technique applied to power 

system called Koopman Mode Analysis (KMA) [16] [17] [24]-

[27]. This theory is based on the linear and infinite-

dimensional Koopman operator [18] [19]-[23]. The KMA is 

applied on snapshot measurements or simulated data following 

disturbances. It extracts significant spatio-temporal 

characteristics. 

 

This paper deals with the application of the KMA to 

identify coherent machines groups of electrical networks 

swinging together in frequency and phase. This identification 
method is based on the analysis of swing dynamics following 

large disturbances. The study is conducted on two tested 

networks: the Kundur two area 4-machines power system and 

the IEEE 9-bus 4-machines power system. A comparison of 

the Discrete Fourier Transform (DFT) analysis is carried out 

with the nonlinear KMA in terms of frequencies and 

coherency identification. This comparison reveals that the 

Koopman modes extract spatial single-frequency oscillations 

and may identify coherent swings dynamics, whereas the 

Discrete Fourier Transform may not identify generators 

coherency because it does not consider phase information.   
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II. THE KOOPMAN MODE ANALYSIS  

A. Koopman Mode Theory  

Koopman pioneered the linear transformations used on 
Hilbert space with the aim to analyse Hamiltonian systems by 

introducing the Koopman operator and its spectrum study 

[28]-[30]. The KMA is a mathematical technique of modal 

decomposition for nonlinear dynamics based on the Koopman 

operator spectral analysis which is defined for nonlinear or 

linear system. [20] [21] Even if the dynamic observed data are 

finite dimensional, this operator is infinite dimensional and it 

doesn’t rely on any linearization of dynamics.  

The following development is based on [21]. Consider the 

dynamics which are described by discrete time, a nonlinear 

difference equation manifold M:  

                                                                               
Where f is a nonlinear map from M to itself. The Koopman 

operator acts on        an observable scalar function 

defined as follow:  

                                                                             
The j-th Koopman eigenvalues      and eigenfunctions 

  
 
     are defined as: 

                                            For j =1, 2 … 

Let        be a vector-valued observable. If each    of the 

components in   lies within the span of eigenfunctions   , 

then the time-evolution of the observable       from       is 
expanded as follows:  

                     
 
         

       
 
        

Where      corresponds to the j-th Koopman mode. It is the 

vector-valued coefficient of the decomposition. This 

decomposition is based on the properties of the point spectrum 

of U, and the analysis based on (4) is the Koopman Mode 

Analysis. 

B. Koopman Mode Analysis Algorithm 

The computation of Koopman modes algorithm is resumed 

in Fig. 1. The input data of this algorithm are: 

- Sampled snapshot measurements or simulated data such as 

the rotors angles speeds of the network following a 

disturbance with a desired sampling frequency « fs ». 

- The observables data Matrix « X » as shown in Fig. 2 where 

the colomns of this matrix are defined as the measurements 

and its lines define the time evolution of the observables 

at       [23]-[27].   

- The Number « Nb » of desired Koopman modes to be 

computed by KMA algorithm. Although the choice of this 

number is arbitrary, it depends on the needed application and 

objective.  

The KMA algorithm steps are as follow [23]-[27]:  

1. Compute the matrix « A » and  « B » defined as : 

                                                                 

                                    
                            

Where « X1 » is the observables data matrix without the 

last line «        ».  
2. Compute the companion matrix « C » : 

 

                             

 
 
 
 
 

              

              

                  

                        
                   

 
 
 
 

                         

 

It is defined as the product of the computed matrix « B » 

and the Moore Penrose pseudoinverse of computed matrix 

« A »: 

                                                                                

3. Compute the Koopman eigenvalues   
  defined as the 

eigenvalues of the computed companion matrix « C ». 

4. Define the Vandermonde matrix « T »: 

 

                        

 
 
 
 
 
 
       

      
         

    

      
       

  
       

    

      
      

  
       

    

                             

           
       

  
     

    
 
 
 
 
 
 
 

                  

 

5. Compute the Koopman eigenvectors     which refer to the 

Koopman modes corresponding to the observables. They 

are defined as the columns of the matrix « V» : 

                                                
                         

The KMA algorithm outputs are [12]-[16]:   

- The j Koopman eigenvalues   
   and modes    . 

- The Koopman modes frequencies     which are defined as: 

                                        
                                 

Where     is the sampling frequency and      
  are the 

Koopman modes arguments defined as: 

                                    
           

                            
- The Koopman modes growth rates « GR » which are defined 

as the complex modulus of the Koopman eigenvalues given 

by: 

                                            
                                    

This parameter evaluates the sampled dynamics damping. 

Indeed, a GR smaller than unity stands for a positively damped 

oscillatory mode. But a GR equal or larger than unity 

determines a non-oscillatory dynamics of power grid [16]-[17] 

[24]-[27]. Therefore, largest growth rates of modes indicate its 

smallest damping ratios.   

 
Fig. 1  KMA Algorithm 
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Fig. 2  Observables data Matrix 

C. Coherency in Koopman modes 

The notion of coherency in the context of Koopman modes 

is defined on [16]-[17] [24]-[25]. The study of this notion in 

power systems deals with oscillatory responses under 

disturbances. Hence, the case of an oscillatory Koopman mode 

which is characterised by an imaginary part of Koopman 

eigenvalue is addressed. For a given oscillatory Koopman 

mode   , called Koopman Mode j, with an eigenvalue    

    
      and a complex conjugate eigenvalue    

 
     

      , 

the corresponding modal dynamics          are defined by 

[24]-[25]:  

                 
             

  
 
          

 
           

     
 

 
 
 
 
 
                  

 
 
 

                   
 
 
 
 

  

Where 

 

                            
                 

        

                                      
             

             

                       

The notation              
 determines the i-th component 

of vector               [24]-[25]. The real part of            

stands for the initial amplitude of the modal dynamics. Its 
imaginary part is affected by their initial phase [24]-[25]. To 

identify coherent swing dynamics of synchronous generators 

in frequency and phase for a given Mode j, it is largely 

sufficient to check both the amplitude coefficients     and the 

initial phases      [24]-[25]. Indeed, a set of oscillatory 

components I ⊆       p  is defined as coherent group swinging 

together with respect to Mode j, if all i  I have the same 

amplitude coefficients and initial phases [24]-[25].    

III. STUDY CASES 

The KMA algorithm is applied to nonlinear swing dynamics 

in two study test power systems:  

- The Kundur 2-area 4-machines power system given in Fig. 3. 

It contains two synchronous equivalent generators, a load 

and a capacitor in each area. Totally 3400 MWs of system 
generation capacity are installed in this study network. 

Approximately 242 MW is exported from area 1 to area 2. 

Each test system generator is equipped with automatic 

regulators with the exception of one.  

- The IEEE 9-bus 4-machines power system given in Fig. 4. It 

contains four synchronous generators equipped with 

automatic voltage and speed regulators. There are two 

generators equipped with Power System Stabilizer (PSS). 

Totally 46060 MWs of system generation capacity are 

installed in this study network.   
The simulation dynamics are performed using an open-source 

power system analysis toolbox (PSAT) of MATLAB [31]. 
The KMA is performed on sampled data of the generators 

angular speeds dynamics following three-phase short-circuit 

fault. The sampling frequency is 80Hz and the number of 

samples is 1600 for the two study test systems. The oscillation 

frequencies of obtained modes and the swing dynamic 

coherency identification are compared for both methods of 

analysis: the KMA and the Discrete Fourier Transform (DFT) 

of study dynamics.  

 

Fig. 3   Tested 2-area 4-machines power system modelled in PSAT 

 
Fig. 4   Tested IEEE 9-bus 4-machines power system modelled in PSAT 

IV. SIMULATION RESULTS 

A. Simulation Settings 

The studied disturbance is a three-phase short-circuit:  

-  For the case of Kundur 2-area 4-machines test system: the 

fault is applied at bus 1 at t=1s and cleared at t=1.09 s. The 

simulation results are shown in Fig.5. We note that following 

this tested short circuit, generators 1 and 2 are swinging 

together in frequency and phase and the other generators 3 

and 4 also show coherent swing excited by this applied 

disturbance. Note that this way of selecting coherent 

machines is heuristic by the check of their swing forms. 

These generators are called a coherent group.  

-  For the case of IEEE 9-bus 4-machines test system: the fault 

is applied at bus 6 at t=1s and cleared at t=1.15 s. The 
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simulation results are shown in Fig.6. We note that following 

this tested short circuit, each generator has a different swing 

dynamic in frequency and phase compared to the other 

generators swing dynamics.    

 

 

 

Fig. 5   Rotor angle speeds of generators following the tested three-phase fault 

for the tested 2-area 4-machines system 

 

Fig. 6   Rotor angle speeds of generators following the tested three-phase fault 

for the tested 9-bus 4-machines system 

B. Comparison of Results 

1)  Frequencies identification:  For the two study test 

systems, the computed frequencies results of the KMA are 

compared with frequencies obtained by the DFT of study 

swing dynamics. The KMA detects full system details that are 

linear and nonlinear oscillatory modes. Note that evaluating 
the magnitudes of Koopman modes growth rates and norms is 

a condition to decide on the Koopman mode dominance.  

Table I provides frequencies results for the tested networks 

only of the three most dominant Koopman modes with largest 

GR and norm.  Fig. 7, Fig. 8, Fig. 9 and Fig. 10 show the DFT 

of different time responses shown in Fig.5.  Fig. 11 shows the 

DFT of generator 2 time response shown in Fig.6. The 

application of the DFT to the other generators time response 

shown in Fig.6 illustrates any frequency peaks. The 

comparison between the KMA and the DFT frequencies 

results reveals that frequencies results of the three most 

dominant Koopman modes have the largest peaks obtained by 

the DFT.  

TABLE I 

FREQUENCIES RESULTS OF DOMINANT KOOPMAN MODES FOR THE TWO 

TESTED POWER SYSTEM 

Tested 2-area 4-machines 

network 

Tested 9-bus 4-machines 

network 

0.41  0.054 
0.11 0.10 

0.15 0.15 

 

 
Fig. 7   DFT of time response shown in Fig.5 for generator 1  

 

 
Fig. 8   DFT of time response shown in Fig.5 for generator 2 

 

 
Fig. 9   DFT of time response shown in Fig.5 for generator 3 

 

 
Fig. 10   DFT of time response shown in Fig.5 for generator 4 
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Fig. 11   DFT of time response shown in Fig.6 for generator 2 

 

2)  Coherency identification: Because the DFT doesn’t 
consider phase information, we cannot conclude from the DFT 

results that a given machines swing coherently or not. 

However, the decomposition into Koopman modes makes the 

extraction of coherent generators possible in the coupled swing 

dynamics. In fact, for the case of tested 2-area 4-machines 

system, the dominant Koopman modes of frequencies 0.41 Hz 

and 0.11 Hz capture a coherent motion which is related to the 

two coherent machines groups: the group of generators 1 and 2 

and the group of generators 3 and 4  as shown in Fig.12 and 

Fig.13. For the case of tested 9-bus 4-machines system, the 

generators show incoherent swings for the dominant Koopman 

modes of frequencies 0.054 Hz and 0.15 Hz as shown in 

Fig.14 and Fig.15.  

 
 

Fig. 12   Coherency in Koopman mode of frequency 0.41 Hz for tested     

2-area 4-machines network 

 

 
 

Fig. 13   Coherency in Koopman mode of frequency 0.11 Hz for tested     

2-area 4-machines network 

 

         

 
 

 
 

Fig. 14   Coherency in Koopman mode of frequency 0.054 Hz for tested   

9-bus 4-machines network 

 

 

 

 
 

Fig. 15   Coherency in Koopman mode of frequency 0.15 Hz for tested      

9-bus 4-machines network 
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V. CONCLUSIONS 

This paper addressed the issue of characterizing global 

behavior of highly nonlinear spatiotemporal dynamics by their 

decomposing into Koopman modes. This recent technique of 

Koopman mode analysis is applied to short-term swing 

dynamics following large disturbances in two tested power 

systems: the Kundur 2-area 4-machines power system and the 

IEEE 9-bus 4-machines power system. 

A comparison between the Koopman mode analysis and the 

Discrete Fourier Transform is performed in terms of 

frequencies and coherency identification. The comparison 

reveals that frequencies results of the most dominant Koopman 

modes have the largest peaks obtained by the DFT. We cannot 

conclude from the DFT results that a given machines swing 

coherently or not because the DFT doesn’t consider phase 
information.  

Our contributions in this paper are as follows: We show 

that Koopman mode analysis, a recently used technique in 

power systems analysis allows to: 

- Identify spatial single-frequency modes embedded in 

nonlinear coupled swing dynamics. 

- Identify coherent swings and machines. 

These identifications are performed on dynamics finite-time 

data and don’t require any direct check of spatiotemporal 

patterns.  
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