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Abstract — Now CVFEM is more attractive as method for solving 
real problems in CFD. Combining advantages of CVFDMs and those 
of FEMs produce a new one, able to deal with complexes geometries, 
and satisfy local and global conservation principals. To solve 
dynamical field, good scheme is always required for discretization of 
the convection terms. The FLO scheme is adopted in this study 
because it is extracted as exact solution from a modified equation. 
The procedure of resolution used is the SIVA. Programming this 
procedure with advanced instructions Fortran 90/95. The results 
presented, prove a best agreement with benchmarks. 
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I. INTRODUCTION 

Control Volume Finite Element Method (CVFEM) is 
more popular for solving problems of fluid flow and heat 
transfer with different degrees of complexities. The 
success reached in mixing the two ancient methods 
(CVFDM and FEM) in CFD problems increase the field of 
its applicability. The physical domain is discretized in 
three nodes triangular elements; every element is 
subsequently divided in three subvolumes, this geometrical 
treatment is achieved by collecting all subvolumes 
surrounding the considered node to construct the control 
volume. Much other geometrical information is needed for 
the discretization of conservation and continuity equations 
step. 

Convective terms present in the momentum equations 
are very difficult to handle it without specific 
considerations. These convection terms are approximated 
by interpolation function that responds to an element 
Peclet number and take account the direction of the 
element average velocity vector. The diffusion terms are 
interpolated linearly, and there is no reason to use the same 
scheme used for convection ones. The first eminent work 
that presents the FLO scheme is Baliga and Patankar [4-5], 
the ideas behind this scheme was proposed in the work of 
Raithby [10-12].  

All works in the literature propose computing velocities 
components and pressure in different places in the grid, 
using staggered grid in structured grid, Patankar and 
Spalding [2], Harlow and Welch [3], and many other works, 
or using unequal order or computing pressure at element 
centroid in the case of unstructured grid. This difficulty 
was solved by the work of Rhie and Chow [12], and it 
adaptation for unstructured grid was proposed by Prakash 
and Patankar [6]. Equal-order method allows using one 
single mesh and the discretization satisfies the masse 
conservation.  

 

II. GOVERNING EQUATIONS 

This work is limited to steady flows of incompressible 
Newtonian fluids. The governing equations of continuity 
or momentum are given by non-linear partial differential 
equations expressed in Cartesian coordinates system (x, y): 

A. Continuity Equation: 
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B. Momentum Equations:  
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C. Transport Equation for other scalar variable: 
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III. NUMERICAL METHOD 

The CVFEM used in the procedure of discretization of 
the aforementioned equations, allows converting these 
equations in system of algebraic equations by integration 
on control volume surrounding the considered node of the 
calculation domain. 

 

 
Fig. 1 Discretization of calculation domain and nomenclatures: (a) simple 
domain decomposed on triangular elements; (b) triangular element and its 
calculated necessary positions; (c) a cell designated by an internal nœud 1 
and all its surrounding elements, control volume associate with it; (d) 
elements and control volume associated at node i on the boundary. 

A. Transport Equation of φ  (general form): 

Considering a node from a calculating domain, and 
applied all the principals of integrating inherent to the 
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method on terms of momentum and continuity equations, 
all contributions are collected with respect to the element-
by-element basis, without forgetting terms related to 
boundary contributions if they exist. 
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Fig. 2 (a) designation of integration point’s ipi on the faces an there 
associated unity vectors in


on the global coordinate system; (b) 

visualization of local axes system on the element centroïde, X axe is 
parallel to m

avV


  

The flux J


is a combination of two existent fluxes in the 

principal equation, the diffusion flux DJ


and the convection 

flux CJ


. n


is normal vector to the face (one among three), 

ds designate its length, fig.2(a). 
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The source term φS is always expressed under the linear 

form, PS and CS are computed at nodes of the calculated 

domain and there values are assumed to prevail on the 
portion of the volume belong to the considering node. 

CPφ SφSS           (8) 

B. Interpolation functions: 

B.1. Diffusion term: 

On each element, the dependent variable φ in diffusion 

term is interpolated linearly: 
D
φ

D
φ

D
φ CyBxAφ                       (9) 

The values of coefficients D
φA , D

φB and D
φC , can be 

uniquely expressed in terms of three nodal values of x, y 
and φ  for each element. 

B.2. Convection term: 

For convection terms, the scheme of Saabas and Baliga 
[7-9, 5], and others is used in this work. Because of strong 
convection relative to moderate diffusion transport can 
happened, linear interpolation of the advection term lead to 
unrealistic oscillatory solution or divergence of all the 
iterative solution procedure. 
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The new local axes system )Y,X( is oriented parallel to 

the direction of m
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fig. 2(b). The variable ξ present in 

equation (11) express exponentials variations in the flow 

direction. Coefficients C
φA , C

φB and C
φC are functions of 

nodal values of φ , Y and ξ . 
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B.3. Discretization of φ  equation: 

Now all the necessary ingredients are present to apply 
integration on the three faces insight the element. 
However, it is important to mention that diffusion terms 
are integrated directly, but advection terms are integrated 
by mean of Simpson1/3. The final algebraic expression for 
node i is obtained assembling procedure for all elements 
contributions sharing the same node: 
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B.4. Discretization of momentum equations: 

Thus it is seen that a clear similarity between 
momentum equations and general form equation of 
transported scalar φ , except existence of additional terms 

of pressure gradients in momentum equations. For less 
programming effort, it is advantageous and rational to 
implement only one general procedure, and careful for 
adding adequate terms if necessary like eq. (20). Finally, 
apply the assembly procedure for obtaining algebraic 
equations given in there compact form eq. (21): 

 

iaoc

elemjiaoc j

V
x

p
dV

x

p




























     (20) 

    i
j

u
i

nb
nbj

u
nbij

u
i V

x

p
buaua jjj 














     (21) 

Additional terms
ij VxP  )/(  represent volume averaged 

pressure-gradients associated with the control volume 
surrounding node i. 
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The interpolation functions used to approximates 
components of velocities in the mass-flux terms are 
defined as: 
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B.5. Equation de pression : 

The contribution of an element to the mass conservation 
equation for a control-volume surrounding node i can be 
written as: 
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However, it is important to note that pressure must be 
expressed by its interpolation function witch have a linear 
form, pressure gradients are exactly the coefficients of the 
pressure interpolation function. 

PPP CyBxAp        (27) 

In the same manner to the φ coefficients, here too, the 

coefficients of the interpolation function are themselves 
functions of nodal pressure of the considered element and 
coordinates of these same element nodes. 

After integration on faces insight the element and a 
suitable assembling procedure of all contributions of all 
other elements surrounding node i, the algebraic equations 
are obtained and written in its compact form as: 
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B.6. Boundary conditions: 

To close all contributions for obtaining the final 
algebraic equations, boundary conditions must be included 
properly. 

If the value of dependent variable is specified on a 
portion of the boundary, than the suitable treatment is as: 

,1aφi  ,0aφnb   spec
φ
i φb       (30) 

If the known transported scalar is a component of 
velocity, additional treatment is made, the coefficient of 
pressure gradient become null and pseudo-velocity obtain 
the velocity value. 

For specified flux condition, the total flux of φ normal 

to the boundary is given by the expression: 
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If outflow condition is considered, the diffusion term is 
negligible compared to the convection term, for this reason 

the term 


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n

φ
Γφ is eliminated from equation. 

B.7. Under-relaxation: 

Following proposition of Patankar [1], under-relaxation 
is a very useful tool to handle the strong non-linearity 
found in discretized equations of Navier-Stokes equations, 
the values of dependent variables change hugely from 
iteration to the successive one. The E-factor method is 
retained in the code developed in the context of this work. 
The values of E proposed are 1 for the components of 
velocity and pressure, and 5 for temperature. 
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IV. ALGORITHME DE RESOLUTION 

The acronym SIVA “Sequential Iterative Variable 
Adjustment” is the procedure of solution adopted in 
this work because its implementation is very simple. 
It is not necessary to repeat all the steps of the 
algorithm here. The reader is invited urgently to the 
documents founded in literature, to see details 
needed. 

V. TESTS DE VALIDATION 

A. Lid driven cavity : 

This benchmark is an important two-dimensional 
laminar incompressible fluid flow. The fluid is moved by a 
horizontal velocity on the upper wall, while the other three 
are subject to the adhesion condition. This problem 
depends on the values of Reynolds number which can give 
dominance to the convection terms when its value is higher 
enough. Moreover, there are two singularities located on 
the bottom corners of the cavity, locations where arise 
secondary recirculation cells in addition to the primary cell 
that dominate the majority of the space of the cavity. The 
geometry of the problem is as shown in fig. 3. 

 
Fig. 3: Driven cavity geometry, and boundary conditions. 
 

The results obtained are compared to those of Ghia et al. 
[18] and L. D. Tran et al. [14]. A comparative table is 
drawn below tab. 1 to show the superiority of results of 
this work against those given by works of L. D. Tran et al. 
[14]. 

 
Tab. 1 COMPARISON OF RESULTS, Re = 400. 

Scheme Grid Umin Vmax Vmin 

Tran et al. 
Present work  

32x32 
-.25841 
-.28096 

.24042 

.25876 
-.37622 
-.39411 

Tran et al. 
Present work 

64x64 
-.30192 
-.30903 

.27823 

.28525 
-.42476 
-.43168 

Tran et al. 
Present work 

129x129 
-.32052 
-.32286 

.29548 

.29824 
-.44475 
-.44743 

Ghia et al. 129x129 -.3273 .3020 -.4499 

U =U0, V = 0 

U = 0 
V = 0 

U = 0, V = 0 

U = 0 
V = 0 L
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                      (a1)                 (b1) 

 
       (a2)               (b2) 

  
      (a3)                                       (b3) 

                           
    (a4)      (b4) 

Fig. 4: Display velocity components fields u and v, Re=400 (a1), (a2); Re 
= 103 (b1) and (b2). Display of velocity profils for u at x=0.5 and v at 
y=0.5 (a3), (b3) for Re = 400, and  (a4) and (b4) for Re = 103. 

B. Natural Convection: 

A square cavity side L containing fluid in motion caused 
by a difference in temperature between the two sides right 
and left one. The two other sides are adiabatic, see fig. 5. 
This difference temperature excites the fluid to circulate 
into the cavity. The Boussinessq hypothesis is valuable 
here. The Prandtl number has the value 0.72 and the 
Rayleigh number varies between 103 and 106. Here too, the 
code built in this work prove its superiority, its results are 
very close to those of DE Vahl Davis [15] than those given 
by the works of Wan et al. [17] and Véronique Feldheim 
[16],  tab.2 and tab.3 confirm these findings: 

 
Fig. 5: Natural convection cavity and boundary conditions. 

 
 
 
 

TAB.2  COMPARISON OF  RESULTS, Ra = 103 AND 104. 
Ra = 103 Umax Vmax Ra = 104 Umax Vmax 

De Vahl Davis, 1983 3.649 3.697  16.178 19.617 
Wan et al.,2001 (DSC) 3.643 3.686  15.967 19.98 
Wan et al.,2001 (FEM) 3.489 3.686  16.122 19.79 

Véronique Feldheim 
41x41 3.629 3.674 41x41 16.025 19.610 
81x81 3.644 3.689 81x81 16.077 19.703 

161x161 3.649 3.692 161x161 16.098 19.730 
Present Work 

33x33 3.6418 3.6842 33x33 16.056 19.5724 
81x81 3.6483 3.6954 81x81 16.1643 19.5999 

161x161 3.6492 3.6964 161x161 16.1746 19.6348 

TAB.3: COMPARISON OF  RESULTS, Ra = 105 AND 106. 

Ra = 105 Umax Vmax Ra = 106 Umax Vmax 
De Vahl Davis, 1983 34.73 68.59  64.63 219.36 

Wan et al., 2001 (DSC) 33.51 70.81  65.55 227.24 
Wan et al., 2001 (FEM) 33.39 70.63  65.40 227.11 

Véronique Feldheim 
41x41 33.73 70.09 41x41 65.19 225.06 
81x81 33.52 70.251 81x81 65.397 226.60 

161x161 33.443 70.549 161x161 65.418 226.62 
Present Work 

33x33 33.936 68.679 33x33 60.1161 215.666 
81x81 34.544 68.613 81x81 63.7264 220.660 

161x161 34.633 68.654 161x161 64.4546 220.786 

U = 0 
V = 0 
T =TChaude 

U = V = 0,  

U = 0 
V = 0 
T =TFroide 

U = V = 0,  

g L 
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                       (a1)                          (a2)                            (a3) 

 
              (b1)            (b2)           (b3) 

  
            (c1)           (c2)           (c3) 

   
          (d1)           (d2)            (d3) 

 
Fig. 6: Fields of velocity components u, v and temperature T for different values of Rayleigh. Ra = 103 on figure (a1), (a2) and  (a3). Ra = 104 on figure 
(b1), (b2) and (b3). Ra = 105 on figure (c1), (c2) and (c3). Ra = 106 on figure (d1), (d2) and (d3). 

 

VI. CONCLUSIONS 

During the elaboration of this work, the aim was 
reproduction of Saabas work [7-9, 5] mentioned in many 
references; the idea is to see the impact of advanced 
object-oriented programming with Fortran 90/95 language 
on the quality of results. 

Despite recent criticisms made in the work of A. 
Lamoueux et al. [13], the obtained results show superiority 
compared to those found in the literature. Moreover, the 
implementation of algorithm of solution is simple and 
direct, and no need for necessary correction of velocity 
components or pressure. The only existent inconvenient in 
the procedure of solution is the affectation of zero value to 
the coefficients of pressure gradients at the boundary 
where the velocity components are known. 
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