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Résumé— Face au durcissement des normes environnementales, les raffineries doivent concilier efficacité économique et 

réduction des émissions (NOx, CO2). Les systèmes de contrôle traditionnels (PID/DCS) s'avèrent limités pour gérer cette 

complexité. Cette communication propose une approche stratégique basée sur le Jumeau Numérique (DT) comme plateforme 

d'intégration essentielle. L'originalité de ce travail réside dans l'incorporation de l'Intelligence Artificielle Explicable (XAI) au 

sein de l'architecture du DT. Cette synergie permet de transformer les systèmes industriels hérités (Legacy Systems) en unités 

prescriptives et auditables, résolvant ainsi le problème de la « boîte noire ». Enrichi par des capteurs logiciels et des techniques 

d'optimisation, le DT assure une conformité réglementaire en temps réel et une transparence décisionnelle. Ce cadre 

opérationnel constitue un levier stratégique pour la transition vers l'Industrie 5.0, réconciliant durablement les impératifs de 

production avec les exigences environnementales pour garantir la viabilité future des raffineries. 

Mots-clés—Jumeau Numérique (Digital Twin), Conformité Environnementale, Optimisation en Temps Réel, Durabilité Industrielle, 

Industrie Pétrolière. 

Abstract—Facing stricter environmental regulations, refineries must balance economic efficiency with rigorous emission 

control (NOx, CO2). Traditional control systems (PID/DCS) have shown structural limitations in managing such multivariable 

complexity. This paper proposes a strategic approach based on the Digital Twin (DT) as an essential integration platform. The 

novelty of this work lies in incorporating Explainable Artificial Intelligence (XAI) within the DT architecture. This synergy 

enables the transformation of Legacy Systems into prescriptive and auditable units, thereby resolving the "black-box" 

problem. Enhanced by soft sensors and optimization techniques, the DT ensures real-time regulatory compliance and 

decisional transparency. This operational framework serves as a strategic lever for the transition toward Industry 5.0, 

sustainably reconciling production imperatives with environmental requirements to ensure the future viability of 

refineries.Keywords: Digital Twin (DT), Environmental Compliance, Real-Time Optimization, Industrial Sustainability, 

Petroleum Industry. 
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I. INTRODUCTION 

Les combustibles fossiles ont historiquement constitué le principal fondement de l'énergie mondiale. 

Cependant, cette domination a un coût environnemental important. L'émission continue d'oxydes d'azote 

(NOx) et de dioxyde de carbone (CO₂) provenant des raffineries de pétrole représente un impact majeur qui ne 

peut plus être négligé [1], [2].Alors que l'industrie du pétrole fait face à un renforcement des réglementations 

environnementales, les systèmes de contrôle traditionnels (réactifs et basés sur des boucles de rétroaction) ont 

montré une capacité limitée à gérer la complexité et la dynamique des processus industriels modernes. Ces 
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solutions ne sont conçues que pour corriger les écarts après qu'ils se sont produits, ce qui est intenable dans le 

contexte actuel [3], [4]. 

Historiquement, les raffineries s'appuyaient largement sur des systèmes de contrôle distribué (DCS) [22] et 

des boucles PID dans les années 1970 et 1980 [20]. Bien que ces systèmes aient permis un contrôle local 

efficace, ils étaient structurellement incapables d'assurer une optimisation globale en temps réel, ni d'intégrer 

des contraintes complexes ou des simulations prédictives multivariables [21]. Ce manque d'approche 

holistique, contrasté par la complexité croissante des procédés et des exigences réglementaires (comme 

l'évolution du Clean Air Act), a justifié l'émergence progressive de l'idée d'une plateforme virtuelle intégrée, 

qui a finalement convergé vers le concept de Jumeau Numérique.L'avènement des technologies numériques 

marque un changement de paradigme significatif. Au-delà des modèles prédictifs simples, le concept du 

Jumeau Numérique (Digital Twin - DT) s'impose comme une solution transformative. Le DT vise à construire 

une contrepartie virtuelle fidèle de l'usine réelle, capable non seulement de surveiller les indicateurs clés, mais 

surtout d'anticiper les déviations de processus et de simuler des actions de contrôle avant qu'un événement 

d'émission ne dépasse les limites réglementaires [5], [6], [7]. 

Cette intégration est encore enrichie par les capteurs logiciels (Soft Sensors), qui permettent l'estimation en 

temps réel de variables coûteuses ou difficiles à mesurer directement, établissant ainsi une base de données 

riche pour le contrôle intelligent [8], [9], [10]. Cependant, le déploiement de ces couches numériques avancées 

sur les infrastructures existantes pose des défis importants liés à l'intégrité des données, à la dérive des 

capteurs et à l'interopérabilité des systèmes hérités (Legacy System) [11], [12]. 

Cette communication vise à analyser le rôle du Jumeau Numérique en tant que cadre opérationnel essentiel 

pour l'atteinte de la conformité environnementale en temps réel et la transition vers des stratégies de durabilité 

industrielle. 

II. MÉTHODOLOGIE ET POSITIONNEMENT DU JUMEAU NUMÉRIQUE 

Cette communication s'inscrit dans la continuité d'une revue de la littérature (SLR) rigoureuse, couvrant 64 

études universitaires et industrielles. L'objectif de cette section n'est pas de détailler le protocole de recherche 

(qui a été publié ailleurs), mais de positionner le Jumeau Numérique (DT) comme l'outil stratégique qui 

émerge de cette analyse exhaustive. 

Afin de contextualiser la problématique et de répondre aux exigences éditoriales, cette revue inclut 

également des travaux fondateurs et réglementaires antérieurs (notamment ceux des années 1970 et 1980) 

pour tracer la trajectoire historique du besoin d'innovation. 

L'examen thématique des études a clairement identifié le DT comme le troisième pilier essentiel, après la 

modélisation prédictive et le contrôle avancé des processus (APC). Le DT est traité ici comme la plateforme 

d'intégration nécessaire pour transformer les modèles IA et les stratégies d'APC en un système opérationnel 

fiable, garantissant la conformité environnementale en temps réel [1], [2], [3].Le cadre conceptuel présenté 

dans les sections suivantes est donc une synthèse critique des meilleures pratiques d'intégration et de 

l'architecture des systèmes numériques avancés identifiées dans la littérature récente [13] , [14] . 

III. CONCEPT DE JUMEAU NUMÉRIQUE ET SES COMPOSANTES 

Alors que les modèles d'IA et l'APC constituent le noyau cognitif, le Jumeau Numérique (Digital Twin - DT) 

fonctionne comme le cadre opérationnel intégré qui unit ces composants [13], [44]. Un DT se définit comme 

une réplique virtuelle en évolution constante d'un actif ou d'un processus physique. Il est conçu pour ingérer 

des données en temps réel (provenant de l'Internet des Objets - IoT) et mettre à jour dynamiquement son état, 

permettant la simulation de divers scénarios sans aucune interférence avec l'équipement physique [13]. 
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Cette approche permet de coupler les modèles de données avec les lois de la thermodynamique (bilans de 

masse et d'énergie), garantissant que les prédictions d'émissions restent physiquement cohérentes et 

auditables. 

DT repose sur l'intégration de différents types de modèles d'IA, chacun jouant un rôle spécifique dans la 

chaîne de contrôle, de la prévision rapide à la validation physique, comme résumé dans le Tableau I. 

TABLE I. TYPES DE MODÈLES D’IA ET LEURS RÔLES DANS LA PRÉDICTION DES ÉMISSIONS 

Type de Modèle Description Rôle dans le Contrôle 

Environnemental 

Modèles basés sur les données ANN, LSTM, GRU – utilisent des 

données historiques pour prévoir les 

émissions. 

Prédiction rapide et adaptation en temps 

réel. 

Modèles hybrids Combinent équations physiques et 

apprentissage automatique. 

Compromis entre précision et 

interprétabilité. 

Modèles mécanistes Reposent sur les bilans de masse et 

d’énergie. 

Utilisés pour la validation et la 

calibration du DT. 

Dans le contexte de la conformité environnementale, le DT sert de plateforme centrale d'intégration [9]. Il 

permet : 

 La Prédiction Proactive : En utilisant des modèles d'IA intégrés, le DT peut anticiper les pics 

d'émissions (NOx ou CO2) bien avant qu'ils n'atteignent les limites réglementaires. 

 L'Analyse What-If : Le DT permet de conduire des analyses d'hypothèses (Que se passe-t-il si…), 

permettant aux opérateurs de simuler et d'évaluer les actions de contrôle possibles avant leur 

déploiement effectif [44]. 

 Intégration des Capteurs Logiciels (Soft Sensors) : Ces capteurs inférentiels jouent un rôle crucial 

en fournissant des estimations en temps réel de variables difficiles ou coûteuses à mesurer (par 

exemple, la qualité des produits ou les taux de conversion), enrichissant ainsi la base de données du 

DT et facilitant le contrôle intelligent [8], [9], [10].L'architecture du DT est donc une condition 

nécessaire à l'atteinte de la conformité réglementaire de manière proactive, en faisant passer le 

contrôle de la réaction à l'anticipation. Cette architecture est détaillée dans la Fig .1 : 

 

Fig. 1 Architecture conceptuelle du Jumeau Numérique pour la conformité environnementale 

L'intégration du Jumeau Numérique (DT) au centre de la boucle de contrôle (Fig.1) transforme la gestion 

réactive classique en une stratégie proactive et prescriptive. Contrairement aux systèmes conventionnels, le 

DT agit comme un moteur de résolution de conflits entre performance économique et conformité 

environnementale (NOx et CO2). En remplaçant la rétroaction par une boucle d'anticipation, cette 

architecture permet de simuler et de valider les recommandations dans un environnement virtuel avant leur 

application physique, garantissant ainsi une exploitation intelligente et sécurisée. 

IV. STRATÉGIE DE CONFORMITÉ ET OPTIMISATION EN TEMPS RÉEL 

Le rôle principal du Jumeau Numérique (DT) n'est pas seulement de modéliser, mais de permettre une 

stratégie de contrôle proactive aboutissant à l'auto-conformité environnementale. Cette stratégie repose sur 

l'intégration de deux mécanismes avancés : l'optimisation et la transparence du modèle. 
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A. De la Prédiction à l'Action Proactive (Auto-Conformité) 

Le DT agit comme un simulateur de scénarios ("What-If" Analysis). Lorsque les modèles d'IA intégrés 

prédisent un dépassement imminent des limites d'émissions (NOx ou CO2), le DT exécute des algorithmes 

d'optimisation en boucle fermée pour identifier la meilleure combinaison de variables de contrôle (par 

exemple, ajustement du débit de combustible ou du rapport air/carburant) [41]. Contrairement au contrôle 

traditionnel, le DT permet une optimisation immédiate et continue du point de fonctionnement pour garantir 

que le processus reste dans la fenêtre de conformité la plus efficace [41]. 

B. Intégration de l'Intelligence Explicable (XAI) 

Pour que les stratégies de durabilité soient adoptées par les opérateurs, elles doivent être fiables et 

transparentes. Le problème de la « boîte noire » inhérente aux modèles d’apprentissage profond soulève des 

préoccupations légitimes dans les applications critiques [12]. L'intégration d'outils d'Intelligence Artificielle 

Explicable (XAI) au sein de l'architecture du DT est cruciale. Le XAI permet d’expliquer comment le modèle 

est parvenu à une prédiction donnée, augmentant ainsi la confiance de l’opérateur et facilitant l’adoption 

généralisée des stratégies de contrôle optimisées [41].Grâce au XAI, le Jumeau Numérique ne se contente pas 

de prédire un dépassement de seuil ; il explique à l'opérateur quelles variables opérationnelles (température, 

débit, etc.) en sont responsables, renforçant ainsi la confiance humaine dans les systèmes automatisés. 

Ce mécanisme d'intégration, qui insère le XAI entre le moteur de prédiction et la décision finale de 

l'opérateur, est illustré par la Fig .2 : 

 
 Fig.  2 Intégration du XAI dans l’architecture du Jumeau Numérique 

 

Analyse Stratégique de l'Intégration du XAI (Fig. 2) :Comme l'illustre clairement la Figure 2, l'intégration du 

XAI dans la boucle de décision transforme le Jumeau Numérique d'un simple prédicteur en un système de 

contrôle fiable et auditable. L'apport stratégique du Module XAI est de résoudre le problème de la "boîte 

noire" (Black Box), qui représente un obstacle majeur à l'adoption de l'IA dans les raffineries de pétrole, 

notamment face aux organismes de réglementation. Le XAI assure une fiabilité réglementaire en fournissant 

aux opérateurs et aux auditeurs une justification claire et intelligible pour chaque recommandation de 

réduction d'émissions. Cette transparence est la condition sine qua non pour que les actions de contrôle soient 

perçues comme crédibles, permettant ainsi un passage sécurisé à l'approche prescriptive et garantissant la 

légitimité des décisions prises par le système. 

 

C. La Durabilité comme Objectif d'Optimisation 

Les stratégies de durabilité nécessitent de concilier des objectifs contradictoires (par exemple, maximiser la 

production tout en minimisant les émissions). Le DT est l'outil idéal pour cela. Il peut intégrer l'efficacité 

énergétique et la réduction des polluants comme objectifs multiples dans ses fonctions d'optimisation. 

L'utilisation de techniques d'apprentissage par renforcement (Reinforcement Learning - RL) dans le DT 

permet en outre d'explorer des solutions de contrôle optimales qui seraient difficiles à découvrir avec les 

méthodes conventionnelles, garantissant une amélioration continue des performances environnementales [41]. 

V. DÉFIS D'IMPLÉMENTATION ET PERSPECTIVES FUTURES 
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Malgré les promesses du Jumeau Numérique (DT) en matière de durabilité et de conformité en temps réel, son 

adoption à grande échelle dans les raffineries de pétrole fait face à des obstacles significatifs. Ces défis sont 

principalement d'ordre pratique et cognitif.Ces défis majeurs, allant de la qualité des données à la transparence 

des modèles, ainsi que les solutions envisagées, sont synthétisés dans le Tableau II. 

Tableau II. DEFIS ET SOLUTIONS POUR L’INTEGRATION DU JUMEAU NUMERIQUE 

Défis Solutions proposées 

Qualité et intégrité des données Mise en place de systèmes de validation et nettoyage 

automatisé des données. 

Interopérabilité des systèmes hérités Utilisation de protocoles ouverts (OPC-UA, MQTT) et 

passerelles IoT. 

Transparence du modèle Intégration de l'Intelligence Artificielle Explicable (XAI). 

Le Tableau II démontre que le Jumeau Numérique (DT) constitue une mutation architecturale majeure. 

Dépassant les limites du Contrôle Avancé (APC) classique, souvent restreint à des boucles locales, le DT offre 

une plateforme holistique capable d'intégrer simultanément l'optimisation économique, la conformité 

(NOx/CO2) et la transparence via le XAI. Ce passage d'une gestion locale à une vision globale prescriptive 

confirme le DT comme l'état de l'art pour la décarbonation intelligente des raffineries modernes.  

A. Qualité et Intégrité des Données 

Le succès d'un DT repose entièrement sur la qualité et la fiabilité des données ingérées. Ironiquement, 

l'environnement riche en données des raffineries modernes peut souvent être pauvre en informations 

exploitables, souffrant de problèmes d'intégrité, de dérive des capteurs, et de silos de données. Assurer la 

qualité des données en temps réel est le défi initial le plus critique pour entraîner efficacement les modèles 

d'IA intégrés dans le DT [11]. 

 Positionnement du Jumeau Numérique (DT) comme État de l'Art : Le Tableau II démontre que le DT 

constitue une mutation architecturale majeure plutôt qu'une simple mise à niveau. Contrairement à 

l'APC historique, limité à des boucles locales, le DT offre une plateforme holistique intégrant 

optimisation économique, conformité environnementale et transparence via le XAI. En passant d'un 

contrôle local à une vision globale prescriptive, le DT s'impose comme l'état de l'art pour la gestion 

des raffineries face aux réglementations actuelles. 

B. Intégration des Systèmes Hérités (Legacy Systems) 

L'un des principaux défis techniques réside dans la difficulté d'intégrer la nouvelle couche numérique du DT 

avec les systèmes de contrôle distribués (DCS) et les systèmes d'automatisation plus anciens (systèmes 

hérités). Ces systèmes n'ont souvent pas été conçus pour des protocoles d'échange de données en temps réel ou 

pour l'interopérabilité, rendant l'intégration complexe et coûteuse [12], [13]. Ce manque de normalisation 

entrave la capacité du DT à fonctionner comme une plateforme de contrôle véritablement unifiée. 

C. Évolutivité et Capacité de Généralisation 

Les modèles prédictifs développés dans un DT sont souvent très spécifiques à l'installation ou à l'équipement 

pour lequel ils ont été formés. La capacité à transférer ou à généraliser ces modèles à travers différentes unités 

ou installations industrielles (appelée évolutivité ou Scalability) reste un défi majeur [41]. Surmonter cela 

nécessite des approches de modélisation plus robustes et adaptatives, capables de gérer les changements dans 

les conditions d'exploitation et la configuration des équipements 

VI. CONCLUSION 

Cette étude démontre que le Jumeau Numérique (DT) transcende les limites des systèmes traditionnels 

en intégrant l'IA hybride et le contrôle avancé. En permettant une optimisation proactive et des analyses 
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"What-If", le DT assure l'auto-conformité réglementaire (NOx et CO2) tout en prévenant les 

dépassements critiques [5], [14], [15]. Bien que des défis subsistent, tels que l'intégration des systèmes 

hérités, l'apport de l'IA Explicable (XAI) garantit la transparence et l'auditabilité nécessaires [11], [17]. 

En somme, le DT s'impose comme une mutation architecturale indispensable vers l'Industrie 5.0, 

transformant le contrôle réactif en une approche prescriptive et holistique pour la viabilité future des 

raffineries.  
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