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Résumé— Face au durcissement des normes environnementales, les raffineries doivent concilier efficacité économique et
réduction des émissions (NOx, CO,). Les systémes de contréle traditionnels (PID/DCS) s'averent limités pour gérer cette
complexité. Cette communication propose une approche stratégique basée sur le Jumeau Numérique (DT) comme plateforme
d'intégration essentielle. L'originalité de ce travail réside dans I'incorporation de I'Intelligence Artificielle Explicable (XAl) au
sein de I'architecture du DT. Cette synergie permet de transformer les systemes industriels hérités (Legacy Systems) en unités
prescriptives et auditables, résolvant ainsi le probleme de la « boite noire ». Enrichi par des capteurs logiciels et des techniques
d'optimisation, le DT assure une conformité réglementaire en temps réel et une transparence décisionnelle. Ce cadre
opérationnel constitue un levier stratégique pour la transition vers I'Industrie 5.0, réconciliant durablement les impératifs de
production avec les exigences environnementales pour garantir la viabilité future des raffineries.

Mots-clés—Jumeau Numérique (Digital Twin), Conformité Environnementale, Optimisation en Temps Réel, Durabilité Industrielle,
Industrie Pétroliere.

Abstract—Facing stricter environmental regulations, refineries must balance economic efficiency with rigorous emission
control (NOx, CO2). Traditional control systems (PID/DCS) have shown structural limitations in managing such multivariable
complexity. This paper proposes a strategic approach based on the Digital Twin (DT) as an essential integration platform. The
novelty of this work lies in incorporating Explainable Artificial Intelligence (XAIl) within the DT architecture. This synergy
enables the transformation of Legacy Systems into prescriptive and auditable units, thereby resolving the "black-box"
problem. Enhanced by soft sensors and optimization techniques, the DT ensures real-time regulatory compliance and
decisional transparency. This operational framework serves as a strategic lever for the transition toward Industry 5.0,
sustainably reconciling production imperatives with environmental requirements to ensure the future viability of
refineries.Keywords: Digital Twin (DT), Environmental Compliance, Real-Time Optimization, Industrial Sustainability,
Petroleum Industry.
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l. INTRODUCTION
Les combustibles fossiles ont historiquement constitué le principal fondement de I'énergie mondiale.
Cependant, cette domination a un co(t environnemental important. L'émission continue d'oxydes d‘azote
(NOx) et de dioxyde de carbone (CO-) provenant des raffineries de pétrole représente un impact majeur qui ne
peut plus étre négligé [1], [2].Alors que l'industrie du pétrole fait face a un renforcement des réglementations
environnementales, les systemes de contrdle traditionnels (réactifs et basés sur des boucles de rétroaction) ont
montré une capacité limitée a gérer la complexité et la dynamique des processus industriels modernes. Ces
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solutions ne sont congues que pour corriger les écarts aprés qu'ils se sont produits, ce qui est intenable dans le
contexte actuel [3], [4].

Historiqguement, les raffineries s'appuyaient largement sur des systemes de contrdle distribué (DCS) [22] et
des boucles PID dans les années 1970 et 1980 [20]. Bien que ces systémes aient permis un contrdle local
efficace, ils étaient structurellement incapables d'assurer une optimisation globale en temps réel, ni d'intégrer
des contraintes complexes ou des simulations prédictives multivariables [21]. Ce manque d'approche
holistique, contrasté par la complexité croissante des procédés et des exigences réglementaires (comme
I'évolution du Clean Air Act), a justifié I'émergence progressive de I'idée d'une plateforme virtuelle intégrée,
qui a finalement convergé vers le concept de Jumeau Numérique.L'avénement des technologies numériques
marque un changement de paradigme significatif. Au-dela des modéles prédictifs simples, le concept du
Jumeau Numérique (Digital Twin - DT) s'impose comme une solution transformative. Le DT vise a construire
une contrepartie virtuelle fidele de l'usine réelle, capable non seulement de surveiller les indicateurs clés, mais
surtout d'anticiper les déviations de processus et de simuler des actions de contrdle avant qu'un événement
d'émission ne dépasse les limites réglementaires [5], [6], [7].

Cette intégration est encore enrichie par les capteurs logiciels (Soft Sensors), qui permettent I'estimation en
temps réel de variables colteuses ou difficiles a mesurer directement, établissant ainsi une base de données
riche pour le contréle intelligent [8], [9], [10]. Cependant, le déploiement de ces couches numériques avancées
sur les infrastructures existantes pose des défis importants liés a l'intégrité des données, a la dérive des
capteurs et a lI'interopérabilité des systémes hérités (Legacy System) [11], [12].

Cette communication vise a analyser le réle du Jumeau Numérique en tant que cadre opérationnel essentiel
pour l'atteinte de la conformité environnementale en temps réel et la transition vers des stratégies de durabilité
industrielle.

I.  METHODOLOGIE ET POSITIONNEMENT DU JUMEAU NUMERIQUE

Cette communication s'inscrit dans la continuité d'une revue de la littérature (SLR) rigoureuse, couvrant 64
études universitaires et industrielles. L'objectif de cette section n'est pas de détailler le protocole de recherche
(qui a été publié ailleurs), mais de positionner le Jumeau Numérique (DT) comme l'outil stratégique qui
émerge de cette analyse exhaustive.

Afin de contextualiser la problématique et de répondre aux exigences éditoriales, cette revue inclut
également des travaux fondateurs et réglementaires antérieurs (notamment ceux des années 1970 et 1980)
pour tracer la trajectoire historique du besoin d'innovation.

L'examen thématique des études a clairement identifié le DT comme le troisiéme pilier essentiel, apres la
modélisation prédictive et le contrdle avancé des processus (APC). Le DT est traité ici comme la plateforme
d'intégration nécessaire pour transformer les modéles IA et les stratégies d'APC en un systeme opérationnel
fiable, garantissant la conformité environnementale en temps réel [1], [2], [3].Le cadre conceptuel présenté
dans les sections suivantes est donc une synthése critique des meilleures pratiques d'intégration et de
I'architecture des systemes numériques avanceés identifiées dans la littérature récente [13] , [14] .

IIl.  CONCEPT DE JUMEAU NUMERIQUE ET SES COMPOSANTES

Alors que les modéles d'lA et I'APC constituent le noyau cognitif, le Jumeau Numérique (Digital Twin - DT)
fonctionne comme le cadre opérationnel intégré qui unit ces composants [13], [14]. Un DT se définit comme
une réplique virtuelle en évolution constante d'un actif ou d'un processus physique. Il est congu pour ingérer
des données en temps réel (provenant de I'Internet des Objets - 10T) et mettre a jour dynamiquement son état,
permettant la simulation de divers scénarios sans aucune interférence avec I'équipement physique [13].
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Cette approche permet de coupler les modeles de données avec les lois de la thermodynamique (bilans de
masse et d'énergie), garantissant que les prédictions d'émissions restent physiquement cohérentes et
auditables.

DT repose sur l'intégration de différents types de modeéles d'lA, chacun jouant un rdle spécifique dans la
chaine de contréle, de la prévision rapide a la validation physique, comme résumé dans le Tableau I.

TABLE I. TYPES DE MODELES D’IAET LEURS ROLES DANS LAPREDICTION DES EMISSIONS

Type de Modele Role dans le Contrdle
Environnemental

Prédiction rapide et adaptation en temps

Description

Modeles basés sur les données ANN, LSTM, GRU - utilisent des

données historiques pour prévoir les
émissions.

Combinent équations physiques et
apprentissage automatique.

Reposent sur les bilans de masse et
d’énergie.

Modeles hybrids

Modeles mécanistes

réel.

Compromis  entre  précision et
interprétabilité.
Utilisés pour la validation et la

calibration du DT.

Dans le contexte de la conformité environnementale, le DT sert de plateforme centrale d'intégration [9]. Il
permet :

o La Prédiction Proactive : En utilisant des modeles d'lA intégrés, le DT peut anticiper les pics
d'émissions (NOx ou CO,) bien avant qu'ils n'atteignent les limites réglementaires.

e L'Analyse What-If : Le DT permet de conduire des analyses d'hypotheses (Que se passe-t-il si...),
permettant aux opérateurs de simuler et d'évaluer les actions de contrdle possibles avant leur
déploiement effectif [14].

e Intégration des Capteurs Logiciels (Soft Sensors) : Ces capteurs inférentiels jouent un réle crucial
en fournissant des estimations en temps réel de variables difficiles ou colteuses a mesurer (par
exemple, la qualité des produits ou les taux de conversion), enrichissant ainsi la base de données du
DT et facilitant le controle intelligent [8], [9], [10].L'architecture du DT est donc une condition
nécessaire a l'atteinte de la conformité réglementaire de maniére proactive, en faisant passer le
contréle de la réaction a I'anticipation. Cette architecture est détaillée dans la Fig .1 :

Modéles
prédictifs d'lA

.| Conformité
environnementale

Jumeau
Numérigque

Processus ‘
industriel ‘
\

Figure 1 : Architecture conceptuelle du Jumeau Numérique
pour la conformité environnementale

Capteurs
logiciels

Fig. 1 Architecture conceptuelle du Jumeau Numérique pour la conformité environnementale

L'intégration du Jumeau Numérique (DT) au centre de la boucle de contrdle (Fig.1) transforme la gestion
réactive classique en une stratégie proactive et prescriptive. Contrairement aux systémes conventionnels, le
DT agit comme un moteur de résolution de conflits entre performance économique et conformité
environnementale (NOx et CO,). En remplacant la rétroaction par une boucle d'anticipation, cette
architecture permet de simuler et de valider les recommandations dans un environnement virtuel avant leur
application physique, garantissant ainsi une exploitation intelligente et sécurisée.

V. STRATEGIE DE CONFORMITE ET OPTIMISATION EN TEMPS REEL

Le role principal du Jumeau Numérique (DT) n'est pas seulement de modéliser, mais de permettre une
stratégie de contrdle proactive aboutissant a I'auto-conformité environnementale. Cette stratégie repose sur
I'intégration de deux mécanismes avanceés : I'optimisation et la transparence du modele.
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A. De la Prédiction a I'Action Proactive (Auto-Conformité)

Le DT agit comme un simulateur de scénarios ("What-1f" Analysis). Lorsque les modéles d'lA intégrés
prédisent un dépassement imminent des limites d'émissions (NOx ou CO2), le DT exécute des algorithmes
d'optimisation en boucle fermée pour identifier la meilleure combinaison de variables de contrble (par
exemple, ajustement du débit de combustible ou du rapport air/carburant) [15]. Contrairement au contrdle
traditionnel, le DT permet une optimisation immédiate et continue du point de fonctionnement pour garantir
que le processus reste dans la fenétre de conformité la plus efficace [16].

B. Intégration de I'Intelligence Explicable (XAl)

Pour que les stratégies de durabilité soient adoptées par les opérateurs, elles doivent étre fiables et
transparentes. Le probléme de la « boite noire » inhérente aux modeles d’apprentissage profond souléve des
préoccupations légitimes dans les applications critiques [12]. L'intégration d'outils d'Intelligence Artificielle
Explicable (XAl) au sein de l'architecture du DT est cruciale. Le XAl permet d’expliquer comment le mod¢le
est parvenu a une prédiction donnée, augmentant ainsi la confiance de I’opérateur et facilitant 1’adoption
généralisée des stratégies de contrdle optimisées [17].Grace au XAl, le Jumeau Numérique ne se contente pas
de prédire un dépassement de seuil ; il explique a I'opérateur quelles variables opérationnelles (température,
débit, etc.) en sont responsables, renforcant ainsi la confiance humaine dans les systemes automatisés.

Ce mécanisme d'intégration, qui insére le XAl entre le moteur de prédiction et la décision finale de
I'opérateur, est illustré par la Fig .2 :

Données du Modgle de i Module XAl
Processus Prédiction 1A . (Interprétation
Ex: Prédiction NOx i &Explication)

Ex.: Facteurs
de la prédiction,
confiance du modéle

Opérateur / Systéme
d'Aide a la Décision

Boucle de Rétroaction

Espfiancés

Actions de Controle
& Optimisation

Figure 2 : Intégration du XAl dans l'architecture du Jumeau Numérique

Fig. 2 Intégration du XAI dans I’architecture du Jumeau Numérique

Analyse Stratégique de I'Intégration du XAl (Fig. 2) :Comme l'illustre clairement la Figure 2, I'intégration du
XAl dans la boucle de décision transforme le Jumeau Numérique d'un simple prédicteur en un systéme de
controle fiable et auditable. L'apport stratégique du Module XAl est de résoudre le probléme de la "boite
noire" (Black Box), qui représente un obstacle majeur a I'adoption de I'lA dans les raffineries de pétrole,
notamment face aux organismes de réglementation. Le XAl assure une fiabilité réglementaire en fournissant
aux opérateurs et aux auditeurs une justification claire et intelligible pour chaque recommandation de
réduction d'émissions. Cette transparence est la condition sine qua non pour que les actions de contr6le soient
percues comme crédibles, permettant ainsi un passage sécurisé a l'approche prescriptive et garantissant la
Iégitimité des décisions prises par le systéme.

C. La Durabilité comme Objectif d'Optimisation

Les stratégies de durabilité nécessitent de concilier des objectifs contradictoires (par exemple, maximiser la
production tout en minimisant les émissions). Le DT est l'outil idéal pour cela. Il peut intégrer l'efficacité
énergétique et la réduction des polluants comme objectifs multiples dans ses fonctions d'optimisation.
L'utilisation de techniques d'apprentissage par renforcement (Reinforcement Learning - RL) dans le DT
permet en outre d'explorer des solutions de contrble optimales qui seraient difficiles a découvrir avec les
méthodes conventionnelles, garantissant une amélioration continue des performances environnementales [18].

V. DEFISD'IMPLEMENTATION ET PERSPECTIVES FUTURES
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Malgré les promesses du Jumeau Numérique (DT) en matiére de durabilité et de conformité en temps réel, son
adoption a grande échelle dans les raffineries de pétrole fait face a des obstacles significatifs. Ces défis sont
principalement d'ordre pratique et cognitif.Ces défis majeurs, allant de la qualité des données a la transparence
des modeles, ainsi que les solutions envisagées, sont synthétisés dans le Tableau II.

Tableau Il. DEFIS ET SOLUTIONS POUR L’ INTEGRATION DU JUMEAU NUMERIQUE

Défis Solutions proposées
Quialité et intégrité des données Mise en place de systtmes de validation et nettoyage
automatisé des données.
Interopérabilité des systémes hérités Utilisation de protocoles ouverts (OPC-UA, MQTT) et
passerelles loT.
Transparence du modele Intégration de I'Intelligence Artificielle Explicable (XAl).

Le Tableau Il démontre que le Jumeau Numérique (DT) constitue une mutation architecturale majeure.
Dépassant les limites du Contrdle Avancé (APC) classique, souvent restreint a des boucles locales, le DT offre
une plateforme holistique capable d'intégrer simultanément [l'optimisation économique, la conformité
(NOX/CO,) et la transparence via le XAl. Ce passage d'une gestion locale a une vision globale prescriptive
confirme le DT comme I'état de I'art pour la décarbonation intelligente des raffineries modernes.

A. Qualité et Intégrité des Données

Le succes d'un DT repose entierement sur la qualité et la fiabilité des données ingérées. Ironiquement,
I'environnement riche en données des raffineries modernes peut souvent étre pauvre en informations
exploitables, souffrant de problémes d'intégrité, de dérive des capteurs, et de silos de données. Assurer la
qualité des données en temps réel est le défi initial le plus critique pour entrainer efficacement les modéles
d'lA intégrés dans le DT [11].

 Positionnement du Jumeau Numérique (DT) comme Etat de I'Art : Le Tableau 1l démontre que le DT
constitue une mutation architecturale majeure plutdét qu'une simple mise a niveau. Contrairement a
I'APC historique, limité a des boucles locales, le DT offre une plateforme holistique intégrant
optimisation économique, conformité environnementale et transparence via le XAl. En passant d'un
contr6le local a une vision globale prescriptive, le DT s'impose comme I'état de I'art pour la gestion
des raffineries face aux réglementations actuelles.

B. Intégration des Systémes Hérités (Legacy Systems)

L'un des principaux défis techniques réside dans la difficulté d'intégrer la nouvelle couche numérique du DT
avec les systemes de contrdle distribués (DCS) et les systemes d'automatisation plus anciens (systémes
hérités). Ces systémes n'ont souvent pas été congus pour des protocoles d'échange de données en temps réel ou
pour l'interopérabilité, rendant l'intégration complexe et colteuse [12], [13]. Ce mangue de normalisation
entrave la capacité du DT a fonctionner comme une plateforme de contréle véritablement unifiée.

C. Evolutivité et Capacité de Généralisation

Les modéles prédictifs développés dans un DT sont souvent trés spécifiques a I'installation ou a I'équipement
pour lequel ils ont été formés. La capacité a transférer ou a généraliser ces modeles a travers différentes unités
ou installations industrielles (appelée évolutivité ou Scalability) reste un défi majeur [19]. Surmonter cela
nécessite des approches de modélisation plus robustes et adaptatives, capables de gérer les changements dans
les conditions d'exploitation et la configuration des équipements

VI.  CONCLUSION
Cette étude démontre que le Jumeau Numérique (DT) transcende les limites des systemes traditionnels
en intégrant I'lA hybride et le contréle avancé. En permettant une optimisation proactive et des analyses
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"What-If", le DT assure l'auto-conformité réglementaire (NOx et CO,) tout en prévenant les
dépassements critiques [5], [14], [15]. Bien que des défis subsistent, tels que l'intégration des systéemes
hérités, I'apport de I'lA Explicable (XAl) garantit la transparence et l'auditabilité nécessaires [11], [17].
En somme, le DT s'impose comme une mutation architecturale indispensable vers I'Industrie 5.0,
transformant le contrble réactif en une approche prescriptive et holistique pour la viabilité future des
raffineries.
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