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Résumé—Face à l'incapacité des systèmes de contrôle traditionnels (PID) à gérer la complexité élevée et les contraintes 

environnementales strictes des raffineries modernes, cette étude synthétise les résultats d'une revue systématique de 64 articles. 

Elle met en lumière le rôle clé de l'intelligence artificielle (IA) et du contrôle avancé des processus (CAP) comme solutions pour 

réduire les émissions critiques de NOx et de CO2 dans les raffineries de pétrole. L'analyse montre une évolution vers des 

modèles basés sur les données (54,7 %) et hybrides (31,3 %), utilisés comme « modèles internes » dans la stratégie de contrôle 

prédictif par modèle (MPC). L'article indique que le MPC est la stratégie la plus efficace, car elle optimise la production tout 

en respectant les contraintes environnementales, ce qui permet de réduire les fluctuations de NOx de 20 % à 30 % par rapport 

au contrôle traditionnel. Cependant, les principaux défis consistent à assurer la qualité des données nécessaires à 

l'entraînement des modèles d'IA et à renforcer leur capacité de généralisation pour une application efficace dans différentes 

installations industrielles. 

Mots-clés —Émissions de NOx, réduction de CO2, modélisation prédictive, intelligence artificielle (IA), contrôle de processus avancé 

(CPA), contrôle prédictif de modèle (CPM), optimisation en temps réel. 

Abstract—Faced with the inability of traditional control systems (PID) to handle the high complexity and strict environmental 

constraints of modern refineries, this study synthesizes the results of a systematic review of 64 articles. It highlights the key role 

of artificial intelligence (AI) and advanced process control (APC) as solutions to reduce critical NOx and CO2 emissions in oil 

refineries. The analysis reveals a shift towards data-driven models (54.7%) and hybrid models (31.3%), used as "internal 

models" in the model predictive control (MPC) strategy. The article indicates that MPC is the most effective strategy, as it 

optimizes production while adhering to environmental constraints, enabling a 20% to 30% reduction in NOx fluctuations 

compared to traditional control. However, the main challenges lie in ensuring the quality of the data required for training AI 

models and enhancing their generalization capacity for effective application across different industrial facilities. 

Keywords—NOx emissions, CO2 reduction, predictive modeling, artificial intelligence (AI), advanced process control (APC), model 

predictive control (MPC), and real-time optimization 

I. INTRODUCTION 

Les raffineries de pétrole sont des centres vitaux pour l'énergie, mais elles représentent une source majeure 

d'émissions de polluants atmosphériques, notamment les oxydes d'azote (NOx) et le dioxyde de carbone (CO2) 

[1], [2]. Les réglementations environnementales croissantes nécessitent des mécanismes de contrôle proactifs 

et adaptables, ce qui constitue un défi majeur pour les systèmes de contrôle traditionnels (PID) qui souffrent 
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d'incapacité à gérer la complexité élevée, l'interconnexion non linéaire des variables et les contraintes strictes 

des procédés modernes. Ces systèmes sont incapables de prédire les changements, réagissant plutôt que 

d’initier [3], [14]. 

 Historiquement, le contrôle des procédés dans les raffineries s'est largement appuyé sur les contrôleurs PID 

(Proportionnel-Intégral-Dérivé) depuis les années 1940. Bien que ces systèmes aient été révolutionnaires à 

l'époque, leur application dans les années 1970 et 1980 a révélé de sérieuses limitations face à la non-linéarité 

croissante des processus de craquage catalytique et aux premières réglementations strictes sur les émissions. 

Ce constat, parallèlement aux exigences de conformité accrues, notamment les 50 ans du Clean Air Act [21], a 

justifié l'émergence d'approches multivariables et prédictives, telles que le Contrôle Prédictif par Modèle 

(MPC) dont les fondations théoriques ont été posées dès 1978 [20]. Cette dépendance aux boucles de contrôle 

indépendantes a souvent conduit à des compromis sous-optimaux entre la production et la conformité 
environnementale, validant ainsi le besoin d'une approche plus sophistiquée. 

 Cette étude, tirée d'une revue systématique de la littérature (SLR), vise à identifier et analyser le rôle central 

des solutions numériques, en particulier les modèles prédictifs basés sur l'intelligence artificielle (IA) et le 

contrôle avancé des processus (APC), comme outils essentiels pour atteindre une réduction durable et efficace 
des émissions de NOx et de CO2 en temps réel  [5 ] ,[ 6] . 

II. METHODOLOGIES 

Cette étude résume les résultats d'une revue systématique de la littérature (SLR) qui a examiné un corpus 

initial de 64 articles et recherches publiés, principalement entre 2015 et 2025, portant sur le contrôle 

numérique des émissions industrielles. Pour tracer la trajectoire historique du besoin d'innovation, cette 

communication inclut également des travaux fondateurs et réglementaires antérieurs, notamment ceux de 1978 

et de 2020, afin de contextualiser la problématique. La sélection, structurée selon le diagramme PRISMA [2], 

a permis de déterminer les pourcentages de modélisation mentionnés dans la section suivante .Les 64 études 

de la SLR ont fait l'objet d'une analyse quantitative et qualitative, axée sur l'évaluation de l'insertion des 

modèles d'Intelligence Artificielle (IA) dans le Contrôle Prédictif par Modèle (MPC). 

III. RÉSULTATS ET DISCUSSION 

A. Modélisation prédictive (Modélisation prédictive alimentée par l'IA) 

L'analyse des 64 études a révélé un changement radical dans les méthodes de modélisation utilisées pour 
représenter les processus complexes de contrôle des émissions [5] . 

Le tableau I présente la répartition quantitative des approches de modélisation identifiées dans la revue 

systématique. 

TABLEAU I .TYPOLOGIES DES MODELS PREDICTIFS 

Type de modélisation Percentage (N = 64) Description et role 

Modèles basés sur les 

données (Data-driven) 

54,7 % Incluent les réseaux de neurones (ANN, LSTM, 

GRU) s’appuyant sur les données historiques 

pour prédire les émissions avec précision. 

Modèles hybrides (Hybrid 

Models) 

31,3 % Combinez les lois physiques et l’apprentissage 

des données pour équilibrer la précision et 

l’interprétabilité . 

particulièrement efficaces pour pallier le manque 

de données historiques (data scarcity) et assurer 

la conformité aux bilans de masse 

Modèles basés sur la 

physique (Physics-based 

Models) 

14,0 % Basés sur les équations physiques fondamentales, 

précis mais moins flexibles pour des conditions 

variables. 
 

La prédominance des modèles basés sur les données souligne la tendance croissante vers les approches 

pilotées par l’intelligence artificielle. 
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La Fig. 1illustre visuellement cette répartition entre les trois principales catégories de modèles utilisés dans 

les études analysées. 

 

Fig. 1.Répartition des études selon le type de modèle 

Cette distribution visuelle, dominée par les modèles basés sur les données (54,7 %) et hybrides (31,3 %), 

confirme une transition paradigmatique claire : le champ de l'APC s'éloigne définitivement des modèles 

purement basés sur la physique. Conclusion du segment : L'analyse des données montre que la synergie entre 

l'IA et les connaissances physiques (modèles hybrides) est l'approche la plus robuste, car elle garantit à la fois 

une haute précision prédictive et une meilleure interprétabilité des résultats pour l'opérateur industriel. Cette 

transition montre que l'industrie s'oriente vers des systèmes apprenants capables de s'adapter à la dérive des 

capteurs et aux changements de qualité du feedstock. 

1) Dominance des modèles basés sur les données et des modèles hybrides :Dominance des modèles basés sur les 

données (Modèles basés sur les données) : Ces modèles représentent 54,7 % des études [7]. Ils 

reposent sur l'apprentissage automatique et l'apprentissage profond (DL), comme les réseaux de 

neurones artificiels (ANN) et les modèles LSTM/GRU, pour fournir une estimation rapide et précise 

des concentrations de NOx et de CO2 en fonction des variables opérationnelles [11] ,[13],[19]. De 

nouvelles études ont notamment démontré l'efficacité des réseaux de neurones convolutifs (CNN) 

pour l'analyse des signaux chimiques et la modélisation des gaz d'émission [8]. Leur principal atout 

réside dans leur capacité à gérer la non-linéarité et les systèmes multivariables. 

 Les modèles hybrides représentent 31,3 % des études. Ces modèles intègrent les lois physiques 

connues avec la capacité de l'intelligence artificielle à apprendre des données restantes, améliorant 

ainsi la précision de la modélisation et sa capacité d'interprétation tout en réduisant le besoin de 

grandes quantités de données d'entraînement [6], [1]. 

2) Rôle de la modélisation dans le contrôle avancé :La prédiction précise des niveaux d'émissions en temps 

réel constitue le fondement du contrôle avancé. Les résultats des modèles d'intelligence artificielle 

servent d'entrées aux algorithmes MPC [5], permettant au système de simulation de prévoir le 

parcours futur des émissions. Cela offre un délai suffisant pour mettre en œuvre des mesures 

correctives avant de dépasser les limites réglementaires. Des études telles que [11], [9]  attestent de 

l'efficacité des techniques d'apprentissage profond, notamment les Transformers et LSTM/GRU, dans 

cette démarche. 

La Fig.2  présente le schéma conceptuel illustrant la manière dont le modèle prédictif basé sur l’IA interagit 
avec le contrôleur MPC pour optimiser les émissions en temps réel. 
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Fig.2  Schéma conceptuel de l’intégration IA + MPC 

Ce schéma conceptuel illustre la synergie entre la puissance prédictive de l’IA et la capacité d’optimisation 

du MPC. Conclusion du segment : L’intégration de l’IA dans le contrôleur MPC est un impératif et non un 

simple ajout ; elle transforme la stratégie de contrôle d’un mécanisme réactif en un système proactif 

d’optimisation environnementale et économique en temps réel. l'IA agit comme un Soft Sensor (capteur 

virtuel) qui nourrit l'horizon de prédiction du MPC, transformant ainsi le contrôle de la réactivité vers la 
proactivité. 

B. Contrôle avancé des processus (APC 

 Le succès de l'application de la réduction immédiate des émissions repose sur la technique de contrôle 

prédictif par modèle (Model Prédictive Control - MPC) : 

1) MPC comme stratégie dominante :Le MPC est la stratégie la plus en vue pour le contrôle avancé de la 

réduction des émissions [3]. Contrairement au PID, le MPC est conçu pour gérer les systèmes 
dynamiques de haute dimension avec des contraintes strictes [4]. 

Le Tableau 2 présente une comparaison des principales méthodes de contrôle en fonction de leur capacité à 

gérer les contraintes et de leurs performances environnementales. 

TABLEAU II . COMPARAISON DES STRATEGIES DE CONTROLE 

Méthode de 

contrôle 

Gestion des 

contraintes 

Prédiction des 

émissions 

Réactivité Résultats typiques 

PID Classique Faible Non predictive Réactive Réduction limitée (< 10 %) 

MPC (Model 

Predictive Control) 

Excellent Oui (temps réel) Proactive Réduction de NOx de 20–30 % 

IA + MPC hydride Très élevée Oui + auto-

apprentissage 

Proactive et 

adaptative 

Optimisation continue multi-objectifs 

Note : Bien que l'intégration de l'IA augmente la complexité du système, l’utilisation de l'IA explicable (XAI) permet d'atteindre 

une interprétabilité améliorée par rapport aux modèles "Boîte-Noire" classiques. Cela garantit que les décisions du contrôleur IA 

+ MPC hybride restent transparentes et auditables pour les opérateurs, contrairement au PID qui, bien que totalement 

interprétable, reste limité par sa nature réactive. 

Ces résultats mettent en évidence la supériorité du contrôle prédictif par modèle (MPC) par rapport aux 

approches classiques PID en matière de réduction proactive des émissions. La valeur essentielle de cette 

analyse réside dans le fait que l'intégration des modèles d'intelligence artificielle avec la stratégie MPC 

constitue aujourd'hui la pointe de l'innovation dans la gestion des émissions industrielles. Alors que le contrôle 

PID traditionnel (l'ancien leader) ne peut que réagir aux écarts après leur survenue, le contrôle hybride APC 

permet d'anticiper les émissions sur plusieurs futures étapes de temps. Cette approche proactive est le facteur 

clé qui permet aux raffineries non seulement de respecter les normes environnementales, mais aussi 

d'optimiser leur rendement énergétique, ce qui est impossible avec les contrôleurs classiques. 

2) Rôle du MPC dans la performance environnementale : Le MPC concilie l'efficacité de production et la 

réduction des émissions (NOx/CO2) en intégrant les limites réglementaires comme contraintes 

explicites [14]. Il exploite des modèles prédictifs pour optimiser le point d’opération à chaque 

intervalle [5], stabilisant ainsi les rejets [15]. L’usage d’algorithmes heuristiques est ici crucial pour 

minimiser les coûts complexes [17]. L'intégration des réseaux de neurones (ANN) au MPC réduit 

les fluctuations de NOx de 20 % à 30 % par rapport aux systèmes classiques [16], tout en 

préservant l’intégrité thermique des équipements. » 

IV. CONCLUTION 

Cette revue systématique a prouvé que l'avenir du contrôle des émissions des raffineries de pétrole réside 

dans l'intégration des modèles prédictifs d'intelligence artificielle avec des stratégies de contrôle prédictif par 

modèle (MPC) [1],   [5]  , [18]. Cette intégration offre la capacité nécessaire pour prédire la dynamique du 
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processus, gérer proactivement les contraintes complexes et atteindre des performances optimales du 

processus en conformité avec les objectifs de durabilité et de conformité environnementale immédiate [15], 

[3] . Les principaux défis restent d'assurer la qualité des données nécessaires pour former les modèles 

d'intelligence artificielle et la capacité de généralisation de ces modèles à travers différentes installations [1], 

[10]. 
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