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Abstract— The control of nonlinear systems presents a significant challenge in automation, as conventional methods often
prove inadequate in the face of strong nonlinearities and parametric uncertainties. This article proposes a novel robust control
synthesis methodology that merges Sliding Mode Control with state feedback within the Takagi-Sugeno framework. By
establishing a polytopic representation of nonlinear systems, the approach enables the use of Linear Matrix Inequality (LMI)
analysis tools. A robust state-feedback controller is designed to ensure local subsystem stability, while a sliding mode control
law guarantees disturbance rejection. The global stability of the closed-loop system is demonstrated via a quadratic Lyapunov
function, and simulations on a nonlinear mechanical system confirm robust performance, showing a tracking error of less than
2% and a 25% reduction in response time compared to conventional methods, thereby offering a systematic framework for
controlling complex nonlinear systems.
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I. INTRODUCTION

The control of nonlinear systems is an active research area in automation, with diverse applications ranging

from robotics to industrial processes [1]. Among robust control methods, Sliding Mode Control (SMC) has
established itself as an effective technique for handling modeling uncertainties and external disturbances [2].
SMC offers the advantage of inherent robustness during the sliding mode but can suffer from the chattering
phenomenon and often requires the measurement of all system states [3]. Concurrently, the Takagi-Sugeno (T-
S) approach provides a formal framework for representing nonlinear systems through multiple local linear
models, enabling the use of analysis tools based on Linear Matrix Inequalities (LMIs) [4].
The main contribution of this paper lies in the development of a unified methodology that combines the
advantages of SMC and the T-S approach with state feedback. This combination overcomes the individual
limitations of each method while preserving their respective strengths. The paper is organized as follows:
Section |1 presents the mathematical preliminaries by describing the two approaches used. Section 111 details
the synthesis of the proposed controller. Section IV presents the simulation results. Section V discusses the
limitations of robust control, followed by the conclusion.

Il. Mathematical Preliminaries
A. Takagi-Sugeno Representation

Most industrial processes are of an uncertain linear nature, due to the presence of disturbances or
uncertainties, or are complexly nonlinear, making the development of a control law or a diagnostic strategy
difficult. Furthermore, linear systems theory offers a wide range of solutions for the control and observation of
linear models; researchers try to find simple linear models to describe the behavior and dynamics of complex
systems, which is not simple to obtain by classical methods. Moreover, fuzzy theory includes a highly
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performant strategy for the control and modeling of nonlinear systems, namely the Takagi-Sugeno fuzzy
modeling, which establishes a synthesis between the complexity of nonlinear systems and the simplicity of
linear systems with a desired degree of accuracy. This type of modeling allows leveraging the simplicity of
linear theory while maintaining the fidelity of the nonlinear representation.

Generally, a T-S type model is based on a collection of fuzzy rules floues (i = 1,2, ... ... )
if Z,(t) is Mi et .......and Zy(t) is Mzi, :

2(t) = A, x(t) + B, u(t) + D, w(t)

then { Y(©) = G x(0)

LMI-based stability conditions: The stability of the closed-loop system can be analyzed using a common
quadratic Lyapunov function for all subsystems: V(x) =xTPx
where P is a symmetric positive definite matrix (P > 0). The system stability is guaranteed if the derivative
of the Lyapunov function is negative, i.e., dire V(x) < 0. The stability conditions can be formulated as a set of
Linear Matrix Inequalities (LMIs). For a T-S system without uncertainties, the stability conditions are given
by:Fori=1,...,7: (4; + BiK;)TP + P(4; + B;K;) < 0. These inequalities are bilinear in P et K;, making
them difficult to solve directly. However, by performing a change of variable Y; = K; P~1these inequalities
can be transformed into LMIs:

ATP+ PA, +Y'Bl +B;Y; <0
B. Sliding Mode Control
Sliding Mode Control (SMC), due to its robustness with respect to uncertainties and external disturbances, can
be applied to uncertain and perturbed nonlinear systems [Slo, 91], [Utk, 77]. Several works have been
developed since 1955 on variable structure systems, initially focusing on linear processes. The global control
is therefore composed of two parts:  U(t) = Uy, (t) + Ugq (1)

Where: U, (t) is the equivalent control, U, (t) is the switching control. The sliding surface is defined by [6]:
S(x) = Gx = 0 ,With GeR™ ™ designed to ensure the stability of the sliding mode.

I11. Synthesis of the Proposed Controller
A. Design of the State Feedback
For each local subsystem, a state feedback is designed:  U;(t) = K;x(t)
The gains Ki are determined by solving the following LMIs: ATP + PA; + Y/Bl + B;Y; <0, P=PT >0
B. Stability Analysis

Theorem 1: The closed-loop system is globally asymptotically stable if there exist matrices P > 0, M; such
that:

ATP + PA; + BiM; + M;"B," < 0
1 1
— (ATP + PA; + AJP + PA;) + S (BiM; + M;"B," + B;M; + M;"B;") < 0

Proof: Consider the candidate Lyapunov function:  V(x) = x7 (¢t)Px(t)

The derivative along the system trajectories gives:
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Vi) =YY m(ZO)y (2O (0 dyx (o)

i=1 j=1

with @;; = (4; + BK;)"P + P(A; + BK))

IV. Experimental Validation
A. Inverted Pendulum Case Study

The inverted pendulum is a classic system in physics and engineering, often used as an example to study the
stability and control of dynamic systems.

x : cart position

0 : rod angle relative to the vertical
M : cart mass

m : pendulum mass

L : rod length

F : force applied to the cart

Fig.1 Inverted Pendulum

1) System Modeling: The dynamic model is as follows:
2

MAmE micoss L0 4 mi '9<d9) = F
m dt2 milcos dt2 mitsin dt =

d?x d*e _
PTEl cosf — 1 Fre) = gsin6

2) Linearization of the Dynamic Model: After linearization of the model, the inverted pendulum has the

following dynamics
0 0 0
Vo ()
0 0 X, Ml

(0] = Ml
7 0 0 1 [|x +k(1))”
; —mg X4
M 00 M

B. Application of robust control using sliding mode

1) Equivalent control expression: U_eq is the continuous component of the control that keeps the system on
the sliding surface S(x)=0 once it has been reached. It exactly compensates for the nonlinear dynamics of the
system. The expression for this control is:

/—g(IV?+ m)

R R O: ©.
|
o O O -

W +,12( )—13x+,14(%9)

Uegg =

Where: S = [1; 1, 15 A4] : the sliding surface

ReR DD
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2) Expression of the nominal control and stability condition: This control allows the operating point to be
brought from any position in space to the slip surface S(x). Let us consider the Lyapunov function: v = g SZ+

1 1
B ‘hgz +§ ‘hxz
And the final command is:

(M+m)g9

146+ 2, ( i

N———

= Ak + A4 (32 0)

Uismey = — Ksign(S)

S
=&

i +

S

And the stability condition is: — k |S]| (% + %) + 100 + qxx < —{|S| —ab? — px% <0

with {,a et B parameters to be determined.

3) Numerical simulation using MATLAB: Let the simulation parameters be as follows:
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state variables are simulated in Figure 2 below:
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Fig.2 System status variables

Sliding mode control applied to the inverted pendulum clearly demonstrates its ability to force the system to follow a
predefined sliding surface, which converges to 0 after 1.2 seconds, enabling the desired performance to be achieved even

when operating conditions vary.
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Fig.3 Robustness of the SMC control, stability of system parameters, and improvement of the sliding surface

Based on this simulation of sliding mode control for the inverted pendulum, which is a nonlinear system, this
control confirms its effectiveness in making rapid changes in control actions to ensure that the system
converges to the desired state efficiently and remains stable there. Recent advances include combining SMC
with other control techniques, such as predictive control or reinforcement learning, to further improve
robustness and efficiency. MCS is also combined with fuzzy logic to take advantage of the benefits of each
method, representing an innovative approach. This promising method is used to control the dynamics of
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systems with the aim of improving process robustness and better managing uncertainties. This hybrid
approach could open up new avenues for the development of advanced control systems in various fields of
application.

C. Application of the Takagi-Sugeno approach

1) Schematic representation of fuzzy sets: let us consider the membership functions (Fig. 4) for the fuzzy sets used:

Evolution des Degrés d'Appartenance

o5 o
Angle 6 (rac)

Fig.4 T-S membership functions

2)Calculation of the final command: The final command force F is the weighted average of the consequences
of all rules, where the weights are the degree of truth of each premise (calculated using AND operators, often
a product or a minimum).

_ _(wyx Fi+wy, x F, +wy * F3)
F=Uegq = ! ! /W1+W2+W3

Where wy, w, et ws the activation levels for each rule. And the command is: Uisyc+rs) = Ueqersy + Un

3) System simulation: The T-S approach combined with SMC control provides a robust framework for
managing complex systems. This combination improves control performance by leveraging the strengths of
both technologies, particularly with regard to managing uncertainties and disturbances.
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Fig. 5 Improvement of the SMC-TS hybrid control system

4) Analysis of simulation results: the use of a hybrid SMC-TS controller improves the performance of the
nonlinear system. In fact, using a fuzzy T-S model makes it possible to model the nonlinear dynamics of the
pendulum across its entire operating range. It also allows a sliding mode control law to be designed to ensure
the stability and robustness of the system as a whole. In fact, the stabilization time of the pendulum is
improved and reduced to 2.2 seconds instead of 4 seconds, and the sliding surface converges rapidly toward 0
after 0.000001 seconds. SMC control is renowned for its robustness. Once on the sliding surface, the system
becomes insensitive to disturbances and parametric variations that satisfy the matching condition. The T-S
model improves this by providing a better estimate of the equivalent term u_eq, thereby reducing the effort
required for the switching term. One problem with SMC control is the use of the sign(s) function, which
causes high-frequency switching near the surface, which is undesirable and wears out the actuators. An
improvement can be achieved by replacing this function with the sat (s) function, but this results in a slight
loss of accuracy. T-S provides a solution to this problem: by using a precise T-S model, the equivalent term
u_eq becomes very close to the ideal control required. The switching term of the SMC control then only has to
compensate for residual errors, allowing a lower gain K to be used. This significantly reduces the amplitude
of the chatter which becomes equal to 0.0587 N. The combination of sliding mode control with the Takagi-
Sugeno approach for an inverted pendulum is a high-end strategy. It combines the robustness and stability
guarantee of SMC with the accuracy and adaptability of the T-S fuzzy model across the entire nonlinear
domain.

V. Fundamental Assumptions and Issues in Robust Control

The design of a robust controller for a T-S system is based on a set of assumptions and aims to resolve a well-
defined issue:

Parametric uncertainties: The system is subject to uncertainties in the matrices of the local subsystems (4;, B;).
These uncertainties may be due to modeling errors, variations in operating conditions, or changes in the
environment.

B External Disturbances: The system is affected by external disturbances w(t) that are assumed to be
bounded in energy.

B Output Feedback: In many practical applications, the entire state vector x(t) is not directly measurable.
Only one output is available. This poses the problem of designing an output feedback controller, which must
estimate the state of the system in order to control it effectively.

m The main objective is therefore to design a controller that stabilizes the closed-loop system and guarantees
a certain level of performance, despite the presence of these uncertainties and disturbances. Robustness here
refers to the system's ability to maintain its stability and performance properties in the face of these
unpredictable elements.

VI. Conclusion and Future Prospects

This article has presented a systematic methodology for designing robust controllers for nonlinear dynamic systems,
based on the Takagi-Sugeno (T-S) modeling approach and the solution of Linear Matrix Inequalities (LMIs). We have
demonstrated that this approach guarantees the stability and robustness of closed-loop systems, even in the presence of
parametric uncertainties and external disturbances. Simulation results have confirmed the effectiveness of the proposed
method. The research prospects in this field are numerous and promising:

B Extension to systems with delays: The approach can be extended to handle dynamic systems with time delays, which
are common in industrial processes and communication systems.

B Online adaptive control: The development of online adaptive control techniques would allow the controller
parameters to be adjusted in real time for better responsiveness to rapid and unpredictable changes in the environment.
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B Advanced industrial applications: The application of these techniques to cutting-edge industrial fields such as
collaborative robotics, autonomous vehicles, smart grids, and aerospace systems paves the way for significant
technological advances.
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