11th International Conference on Green Energy & Environmental Engineering (GEEE-2025)
Proceedings of Engineering & Technology — PET-Vol 94, pp. 206-216

Impact of the Intersection of Artificial Intelligence
and the Reduction of Carbon Footprints

Alaeddine Boubaker

DBA-Data Science, European School of Data Science and Technology
C/O Rushford Business School, Blegistrasse 15, 6340 Baar, Switzerland

ala.boubaker@gmail.com

Abstract— This study contributes to an understanding of the potential of Al in achieving a sustainable
environment. In this paper, we investigate various machine learning algorithms in the context of supply chain
management to determine which machine learning algorithms are best suited for predictive maintenance and
CO2 emissions prediction. We highlight the practical application of this model combined with 1SO-14064 by
demonstrating how organizations can reduce their carbon footprints while optimizing and enhancing operational
efficiency.
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. INTRODUCTION

Carbon emissions, the greenhouse effect, and climate change are the most catastrophic environmental issues
worldwide. Organizations make benefits by shifting all or part of their supply chain activities to countries with
less stringent CO2 emissions regulations to avoid high compliance costs. This affects the climate through the
increase of greenhouse gases as organizations expand their business operations and profit from lax regulations
in these countries. Countries have established international agreements, such as the Paris Agreement, to limit
global warming to 2 degrees by 2050 and carbon dioxide emissions to 2 tons per person by 2050. In our
research, we examine the case study of a German company operating in Tunisia. There are approximately
three hundred German companies engaged in part of their supply chain activities in Tunisia. We analyze the
current situation of CO2 emissions in Tunisia and how Al could assist countries and organizations in reducing
their CO2 emissions based on 1SO 14064.

Il. LITERATURE REVIEW

A review paper by [1], based on 1SO 14064 and the Greenhouse Gas Protocol, aims to comprehend, assess,
supervise, document, and verify greenhouse gas emissions while suggesting mitigation plans for
organizations. A study by [2] presents an overview of the carbon footprint and explains how 1SO 14067:2018,
based on its principles, requirements, and guidelines, could support organizations in measuring and reporting a
product's carbon footprint.

The 2022 sustainability report of the German multinational company 'DRAXLMAIER' [3], which develops
and manufactures wiring systems, interiors, and battery systems and has a significant presence in Tunisia,
aims to make the future of mobility sustainable by reducing the CO2e footprint of its products. Research by
[4] Integrating Artificial Intelligence investigates the role of artificial intelligence and predictive analytics in
optimizing supply chain management, leading to a minimized carbon footprint using the Random Forest
algorithm, one of the better-performing machine learning techniques.

Despite significant advancements in CO2 emission prediction based on Al and machine learning
techniques, there remains a lack of research on preparing the data required for calculating the carbon footprint
using 1SO 14064 while obtaining appropriate insights from Al and machine learning techniques to optimize
the application of these standards.
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Il. RESEARCH OBJECTIVE

The primary objective of this research is to investigate the current situation of carbon dioxide emissions of
Tunisia and to examine the intersection of Artificial Intelligence with ISO 14064 to reduce GHG emissions
and enable minimal carbon footprint of supply chain operations.

V. RESEARCH METHODOLOGIES

The research approach of this paper employs a mixed-method strategy. It involves a critical examination of
various studies regarding Tunisian politics on reducing carbon emissions. A case study of a German
company operating in Tunisia will be analyzed to illustrate how Al could be incorporated into the supply
chain process to reduce carbon emissions.

V. TUNISIAN POLITICS OF REDUCING CARBON EMISSIONS

In 2021, Tunisia emitted 37.1 million tonnes of CO2 equivalent and belongs to the World's 100th largest
emitter with 0.08% of global emissions and 3.14 tonnes of CO2 equivalent per person. However, Germany
emitted 681.18 million tonnes of CO2 equivalent representing 1.43% of global emissions and 8.19 tonnes of
CO2 equivalent per person [5].
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Figure 1 Tunisia's CO2 emissions in 2021

In 2021, Tunisia emitted 29,61 MtCO2 emissions from the energy sector, 6.15 MtCO2 emissions from the
industrial ~ processes, and 4,72 MtCO2 emissions from the agriculture sector. [5].
Tunisia's registered motor vehicles were reported at 1,450,000 units in December 2015. [6].
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Figure 2 Tunisian Global Historical GHG Emissions from 1990 to 2021
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Figure 3
Tunisia's Registered Motor Vehicles from 2005 to 2015

As shown in Fig. 2 and Fig. 3, 2015 was a record year with 1,450,000 units and 46,87 MtCO2 emissions.
Tunisia's forest development initiative in 2015 contributed to a change, with approximately 6.7% of the
country's territory, producing positive effects on CO2 emissions. Forests are carbon sinks as they absorb CO:
from the atmosphere, which helps mitigate climate change. Tunisia is increasingly affected by the
consequences of global climate change and has set ambitious goals within the scope of the Paris Climate
Agreement to reduce CO2 emissions to 41 percent by 2030 compared with 2010. [7]. Fig. 4 shows that the
majority of global GHG emissions worldwide come from the energy sector, accounting for 34%. The
industrial and transport sectors together represent 39% of global GHG emissions. [8]. The predictive
maintenance of vehicles and industrial machines aims to minimize GHG emissions from all related sectors,
optimize supply chain operations, and reduce costs.
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Figure 4 Global GHG emissions by sector in Gt CO2-eq from 1990 to 2019

VI. ISO 14064: CASE STUDY OF DRAXELMAIER GROUP

ISO 14064 is a set of international standards for greenhouse gas (GHG) auditing and validation. It provides
support for organizations on quantifying and reporting their GHG emissions and establishes the framework for
managing the reduction of these emissions. The standard is divided into three main parts:

o ISO 14064-1: specifies the requirements at the organization level for calculating and reporting GHG

emissions.

e ISO 14064-2: guides organizations involved in climate mitigation projects to reduce their GHG

emissions.
o ISO 14064-3: provides requirements for the validation and verification of GHG assertions, ensuring accuracy
and transparency in communicating the report.
Organizations typically implement frameworks for greenhouse gas (GHG) inventory reporting by following
structured steps that ensure standardized reporting.

A. Selecting a reference year

Organizations choose a reference year that forms the basis for emissions reporting. The selection of the
reference year affects the calculation” s accuracy of the emission and the future comparisons. In our study, we
choose 2022 as a reference year for emissions reporting of DraxImaier Group.
B. Defining Boundaries

Organizations identify all direct and indirect emissions scope across the organization. Table | provides
insights into three scope categories of greenhouse gas emissions.

TABLE | GREENHOUSE GAS EMISSIONS SCOPES

Scope 1 Scope 2 Scope 3
Direct GHG emissions owned by an Indirect GHG emissions from Indirect GHG emissions from
organization and arise from direct purchased electricity, steam, heat, and | activities in an organization’s value
combustion processes at the cooling, linked to the energy supplier. | chain, such as transportation and
company's own locations, including waste management.
emissions from the company's vehicle
fleet and from heating.

C. Detecting Emission Sources

They collect a list of all potential emission sources of their activities. This includes for example emissions
from raw materials, production, energy use, transportation, and waste management. Table Il details the
sources of greenhouse gas emissions by scope.

TABLE || SOURCES OF GREENHOUSE GAS EMISSIONS BY SCOPE

Scope 1 Scope 2 Scope 3
Emissions from burning natural gas Emissions from electricity generation | Upstream Activities:
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for heating in a company building.
Emissions from a gas-fired boiler used
for production processes.

Emissions from a company fleet of
vehicles (e.g., trucks, cars) using
gasoline or diesel.

at power plants that supply energy to
the company's facilities.

Emissions associated with the steam
generated by a utility that provides
heating for a company's production
facilities.

Transportation and distribution
(upstream).

Purchased goods and services.

Capital goods.

Fuel- and energy-related activities not
already included in Scope 1 or 2.

Waste generated in operations.
Employee commuting and business
travel.

Downstream Activities:

Transport and distribution
(downstream).

Processing of sold products.

Use of sold goods.

End-of-life treatment of sold products.
Leased assets.

Investments.

D. Applying the relevant method

Organizations utilize standardized methodologies for calculating their GHG emissions. The Greenhouse
Gas Protocol offers best practices for various industries. Organizations use two methods for calculating Scope
2 emissions. The location-based method refers to the average emission intensity of the national electricity
grid, while the market-based method relies on specific emission factors from contracts with electricity
suppliers.

E. Gathering activity information

This step involves the collection of relevant data of energy consumption, raw materials used, and logistics
operations that contribute to GHG emissions. This includes gathering energy invoices, production data, and
transportation route information necessary for more precise calculations.

F. Calculating GHG emissions

Organizations calculate their total GHG emissions from the identified sources based on emission factors
related to different fuels and processes. According to Table Ill, the Dréxelmaier Group's highest CO2
emissions come from Scope 3, totaling 2,900,010 t COze, of which 113,524 t COze arise from upstream
transportation and distribution. [3]

TABLE Il SOURCES OF GREENHOUSE GAS EMISSIONS BY THE SCOPE OF THE DRAXELMAIER GROUP

8,798 t COee.

Total Scope 2 location-
based emissions:
139,430 t COze.

Company Scope 1 Scope 2 Scope 3
Draxelmaier Group Total Scope 1 Emissions: Total Scope 2 Market-based | Total Scope 3 Emissions
17,521 t CO2¢ emissions: 2,900,010t COze

Purchased goods and
services: 2,342,573 t COze
Capital goods: 274,056 t
COze

Fuel and energy-related
activities (not included in
Scope 1 or 2): 9,072 t COze
Upstream transportation
and distribution: 113,524 t
CO2¢e

Business travel: 1,802 t
CO2¢e

Employee commuting:
82,443 t COze

End-of-life treatment of
sold products: 2,605 t CO2¢

G. Validation, Verification, and Reporting GHG emissions
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An independent audit may conduct a review to ensure the accuracy of the GHG emissions inventory. This is
crucial for establishing transparency, credibility and compliance with regulatory requirements. The completed
inventory is reported and communicated to relevant stakeholders, such as management, authorities, and the
public.

H. Establishing goals for reduction of GHG emissions

Organizations set goals for emissions reduction based on the previous report. These goals are crucial for
guiding future strategies and decisions. The DRAXLMAIER Group has established goals for the reduction of
greenhouse gas (GHG) emissions as part of their future sustainability plan. It aims to reduce Scope 1 and 2
emissions by 66% between 2021 and 2029, which aligns with the Paris Agreement commitments to combat
climate change. [3]

I. Evaluating and adjusting

Continuous evaluating of emissions and periodic adjusting to the inventory are important to optimize
operations and emissions sources precisely.

VII. DiscussiON

The supply value chain often represents the largest portion of total emissions across the three scopes. Al
technology leads to the optimization of the supply chain by enhancing demand forecasting, transport shipping
routes, predictive maintenance, waste management and recycling, pollution management, energy efficiency,
environmental surveillance, risk management, and automation of repetitive tasks. The integration of Al in the
supply chain process aims to optimize trade operations and reduce carbon emissions. The return on investment
in integrating Al-powered solutions in supply chain management brings benefits through the analysis of
historical and real-time data and the application of predictive analytics to make sustainable decisions
regarding demand forecasting, logistics, recycling, and carbon footprint monitoring. In this research, we focus
on how Al could support predictive maintenance of vehicles to reduce CO2 emissions in the supply chain.

A. Predictive maintenance

Predictive maintenance is a preventive maintenance strategy based on data analysis and predictive analytics
to identify the condition of equipment and predict when maintenance should occur. Predictive maintenance
enables organizations to operate efficiently and on demand by keeping track of equipment problems before
they arise, thus preventing possible downtime. Doing this saves energy, optimizes the use of
equipment, reduces maintenance costs, and CO2 emissions generated by emergency work.

1) Data Collection: Data are basically collected from three sources: sensors, historical records, and
environmental conditions. Sensor data relates to the collection of real-time data such as the engine’s
revolutions per minute. When this value is too low or high, it may signal engine’s failure. Another relevant
value are the lubricating oil pressure and temperature. In this context, low pressure means oil starvation,
which could burn up the engine; too high temperature is a risk of oil breakdown, and too low temperature
indicates inadequate lubrification. Further data include the coolant pressure and temperature, which measure
the pressure in the coolant system to maintain the proper temperature of the engine and avoid overheating.
Finally, the fuel pressure expresses the pressure of fuel supplied to the engine, which affects the Combustion
guality and engine performance. Our dataset includes one label, which is the engine condition. It indicates the
operational state of the engine, which is influenced by the previous features. Al based on the potential of
machine learning algorithms used for the classification, enables us to predict the future state of the engine
derived from historical data of the features. In our research, we utilized a dataset called [9] which includes six
features. Fig. 5 provides an overview of engine’s data based on the engine’s revolutions per minute, the
lubricating oil pressure and temperature, the coolant pressure and temperature and the fuel consumption to
predict the engine condition label. It includes 19535 rows and 7 columns.
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Engine rpm Lub o0il pressure Fuel pressure Coolant pressure lub oil temp Coolant temp Engine Condition

0 700 2.493592 11.790927 3.178981 84.144163 81.632187 1
1 876 2.941606 16.193866 2.464504 77.640934 82.445724 0
2 520 2.961746 6.553147 1.064347 77.752266 79.645777 1
3 473 3.707835 19.510172 3.727455 74.129907 71.774629 1
4 619 5.672919 15.738871 2.052251 78.396989 87.000225 0
19530 902 4117296 4.981360 4.346564 75.951627 87.925087 1
19531 694 4.817720 10.866701 6.186689 75.281430 74.928459 1
19532 684 2.673344 4.927376 1.903572 76.844940 86.337345 1
19533 696 3.094163 8.291816 1.221728 77.179693 73.624396 1
19534 504 3.775246 3.962480 2.038647 75.564313 80.421421 1

19535 rows = 7 columns

Figure 5 Engine Health Dataset Overview

2) Predictive analytics: classification: The supervised learning refers to the training of a model using feature
data to predict the label for the new data. The label in our case study is known in advance, so the supervised
learning algorithms is suitable for our research methodologies. There are multiple algorithms behind machine
learning, particularly for classification problems. Some of the ones that are often used by supply chain
professionals include: KNeighborsClassifier (KNN), Decision Tree, RandomForestClassifier, Logistic
Regression, Support Vector Machines (SVM). These algorithms have their strengths and weaknesses based on
the problem to be solved and the nature of the dataset. For example, in applications like supply chain
management, the selected algorithm may be influenced by data correlation, operational requirements, and
technical restrictions. Algorithms such as Random Forest work well for complex environments using
ensemble methods for tasks like predicting likely future states or simply using Logistic Regression to gain
insight on a binary classification task. [4]

TABLE IV METRICS RESULTS OF THE CLASSIFICATION MACHINE LEARNING ALGORITHMS FOR THE ENGINE HEALTH DATASET

precision recall fl-score Accuracy

RandomForestClassifier 0 0.62 0.29 0.40 0.66700
1 0.68 0.89 0.77

LogisticRegression 0 0.60 0.30 0.40 0.661632
1 0.68 0.88 0.76

DecisionTreeClassifier 0 0.57 0.41 0.48 0.664704
1 0.70 0.82 0.75

KNeighborsClassifier 0 0.48 0.42 0.45 0.611722
1 0.68 0.72 0.70

SVM (kernel="linear") 0 0.61 0.20 0.30 0.652674
1 0.66 0.93 0.77

SVM (kernel=poly) 0 0.64 0.09 0.15 0.63885
1 0.64 0.97 0.77

Refer to Table 1V, the RandomForestClassifier has the best accuracy at 0.66700 compared to the other
tested machine learning algorithms. In our case study, 0.66700 is still not a good accuracy value for an
optimized outcome; however, if the dataset is expanded, the RandomForestClassifier could be better trained
and achieve better accuracy. Fig. 2 shows the confusion matrix used for evaluating the accuracy of
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RandomForestClassifier to understand how well our model is predicting classes. As an example,
RandomForestClassifier has correctly predicted 2177 positive class.
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- 500
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Figure 6 Confusion Matrix of the RandomForestClassifier

B. CO2 emission prediction of automobile vehicles

This is a unique research area that is heavily based on mechanical engineering, environmental science, and
data analytics, helping to predict and monitor carbon dioxide emission rates from automobiles. By utilizing
advanced data analytics, machine learning models, and real-time monitoring technologies, stakeholders can
gain insights into emissions performance to reduce their environmental impact and ensure regulatory
compliance more effectively.

1) Data Collection: Data are primarily collected from three sources: sensors, historical records, and traffic
conditions. Sensor data refers to the collection of real-time data related to engine performance, fuel
consumption, and CO2 emissions. Historical data involves the gathering of historical emissions data from
automotive manufacturers. Traffic and driver behavior condition data indicate the traffic status, speed, and
driver behavior that impact the CO2 emissions. In our research, we utilized a dataset called [10], which
includes eleven features. Fig. 7 provides an overview of data for every vehicle class and engine size, including
the fuel type and fuel consumption in both city and highway conditions, used to predict the CO2 emissions
label. It comprises 7,385 rows and 12 columns.
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Vehicl Enei Fuel Fuel Fuel Fuel Fuel c02
Make  Model e(;:s: Si:i:; Cylinders Transmission Tuee Consumption Consumption Hwy Consumption Consumption Enissions(g/kn)
P& City (L/100 kn) (L/100 kn) Comb (L/100 kn) Conb (mpg) &

0 ACURA ILX  COMPACT 20 4 AS5 z 99 6.7 8.5 33 19

1 ACURA ILX  COMPACT 24 4 Mé Z 12 17 9.6 29 il

2 ACURA o COMPACT 15 4 AV7 VA 6.0 5.8 59 48 136

HYBRID ' ’ ' '

MDX SUV-

3 ACURA WD SMALL 35 6 AS6 z 127 9.1 ni1 25 255
RDX SuV-

4 ACURA AWD SMALL 35 6 AS6 z 121 8.7 106 27 244
XC40 TS SUV-

7380 VOLVO AWD SMALL 20 4 AS8 Z 10.7 17 94 30 219
XC60 TS SuV-

7381 VOLVO AWD SMALL 20 4 AS8 z 1.2 83 9.9 29 232
XC60T6 SUV -

7382 VOLVO AWD SMALL 20 4 AS8 z 17 8.6 103 27 240
XC90TS SUv-

7383 VOLVO AWD  STANDARD 20 4 AS8 z 1.2 83 99 29 232

7384 VOLVO XesoTe SUv- 20 4 AS8 z 122 8.7 107 26 248

AWD  STANDARD

7385 rows x 12 columns

Figure 7 CO: Emissions Dataset Overview

2) Predictive analytics: regression: Linear regression can be used for simpler relationships where emissions
are expected to be proportional to certain features, such as fuel consumption. Random forests and support
vector machines can be employed for regression tasks to predict CO2 emissions based on input features,
including vehicle type, engine size, cylinders, fuel type, and fuel consumption in the city and on the highway;
these models manage non-linear relationships. Refer to Table V, the RandomForestRegressor has the best R-
Squared (R2) at 0.9687 compared to the other tested machine learning algorithms.

TABLE V METRICS RESULTS OF THE REGRESSION MACHINE LEARNING ALGORITHMS FOR THE CO2 EMISSIONS DATASET

Mean Absolute Mean Squared Root Mean Squared R-Squared (R?)
Error (MAE) Error (MSE) Error (RMSE)
RandomForestRegressor | 4.6000 106.6837 10.3288 0.9687
LinearRegression 13.5136 410.8422 20.2692 0.8793
PolynomialFeatures 8.9617 255.4188 15.9818 0.9250
DecisionTreeRegressor | 5.1828 115.1643 10.7315 0.9662
VIII. CONCLUSION

The preservation of our climate is a mission for our countries, organizations, and people. Everyone is
involved in this mission to protect our climate for future generations. Artificial intelligence-powered solutions
support organizations in calculating and reducing their GHG emissions while optimizing their supply chains.
Predictive maintenance is not only relevant for the industry and transport sectors but also for the entire
country, considering the number of vehicles in Tunisia as an example. In this context, the Random Forest
machine learning algorithm performs well for predictive maintenance and the prediction of failure and CO2
emissions.
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