# Comparative study of numerical and algebraic approaches for the evaluation of the thermal balance of a sports hall Located in Italy

SEMPORE Jean Yves Gabriel <sup>1</sup>, Ons TLILI <sup>2</sup>, 1,2 Central Polytechnic School of Tunis.Université Centrale- HONORIS UNITED UNIVERSITIES <sup>1</sup>jeanyvessempore@gmail.com <sup>2</sup>ons.tlili@universitecentrale.tn

Abstract: The global energy landscape is characterized by an ever-increasing demand for energy driven by population growth, urbanization, and technological advancements, while concurrently facing the challenge of reducing greenhouse gas emissions and minimizing carbon footprints. In this context, energy-efficient buildings have emerged as a pivotal solution, accounting for approximately 40% of global energy consumption [1]. This study focuses on the energy design of a school building in Italy, aligning with stringent energy efficiency standards to create an environmentall<sup>2</sup>y friendly and user-comfortable educational facility.

The research integrates key aspects of energy engineering, including the sizing of hydraulic and air distribution networks, thermal analysis, ventilation, and heating systems. A comparative approach was employed, combining manual calculations and advanced numerical simulations to evaluate various design solutions. The primary objective of this study was to assess the thermal performance of the building under different scenarios, optimizing energy consumption while maintaining indoor comfort.

The results highlight the potential of simulation-based energy design to enhance decision-making in sustainable building projects. By comparing thermal balances under diverse conditions, the study provides insights into the optimal configurations for heating, ventilation, and air conditioning (HVAC) systems. These findings contribute to advancing energy-efficient practices in building design and underscore the importance of adopting an integrated, simulation-driven approach to achieve sustainable construction objectives.

Keywords: Energy simulation, Thermal balance, Energy efficiency, Sustainable building, HVAC systems

#### Nomenclature :

- T : Temperature [K]
- S : Surface [m<sup>2</sup>]
- $\Phi$ : heat flow [W]
- e: Thickness [m]
- R: Thermal resistance[m<sup>2</sup>.K/W].

### $\lambda$ : thermal conductivity [W.m.K]

K: heat transfer coefficient [W/m<sup>2</sup>.K]

### I. INTRODUCTION

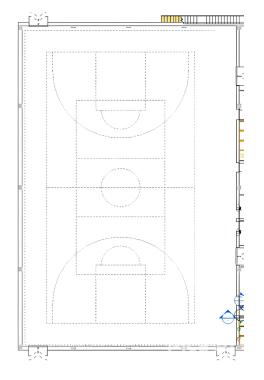
This work deals with a specific part of a study on the energy design of a school building located in Castiglione delle Stiviere, Italy;

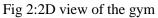
More specifically, it calculates the gymnasium's heat balance using two distinct approaches: A traditional method based on theoretical calculations, and a second method based on the use of specialized software tools.

The first software to be used is **Edilclima** [2], a tool dedicated to evaluate the energy performance of buildings. Designed to meet Italian legal and regulatory requirements, Edilclima can be used to produce energy performance certificates (CPE), check compliance with applicable regulations and carry out energy audits. The software is particularly well-suited to the Italian regulatory and climatic context, offering a complete and accurate solution for projects located in this region.

The second tool used is Revit, a building information modeling (BIM) software package developed by Autodesk; Designed for the creation of technical drawings and architectural designs, it also offers advanced functionalities for building energy simulation. Unlike Edilclima, Revit adapts to a wide variety of climatic contexts and international projects, making it a versatile tool for architects and engineers. Its integrated tools enable energy performance to be assessed during the design phase, providing opportunities for energy optimization and informed decision-making.

This study aims to compare these two approaches by evaluating their efficiency and limitations in conducting the thermal balance of a building. By comparing the results obtained through the traditional method and numerical simulations, we aim to demonstrate the advantages and disadvantages of each method, as well as their relevance in different contexts. This analysis will contribute to a better understanding of the tools available for the eco-responsible design of modern buildings.


### II. CALCULATION OF THE HEAT BALANCE


| Outside temperatures | Winter- 8°C ; H.R. 80%               |
|----------------------|--------------------------------------|
|                      | Summer + 35°C ; H.R. 50%             |
| Building category:   | E.6(2): Buildings used for           |
|                      | sporting activities: gymnasiums      |
|                      | and similar                          |
|                      | E.7: Buildings used for school       |
|                      | activities at all levels and similar |
|                      |                                      |

A. Heat balance calculation using standard equations applied to HVAC systems [3]



Fig 1:3D view of the gym





### TABLE I SIZE OF THE SPORTS HALL

| Length            | 34 m²               |
|-------------------|---------------------|
| Width             | 22.5 m <sup>2</sup> |
| Height            | 8 m²                |
| Area 1            | 180 m²              |
| Area 2            | 272 m²              |
| Floor and ceiling | 765 m²              |

2) Calculation of thermal transmittance : Here we use the standart equations

➤ composition of external walls

| TABLE 2                    |
|----------------------------|
| SURFACE THERMAL RESISTANCE |

| External surface thermal   | 0.13m <sup>2</sup> K/W  |
|----------------------------|-------------------------|
| resistance R <sub>se</sub> |                         |
| Internal surface thermal   | 0.073m <sup>2</sup> K/W |
| resistance R <sub>si</sub> |                         |

## TABLE 3:DIFFERENT LAYERS OF THE OUTER WALL

| Material      | e        | λ        | R        |
|---------------|----------|----------|----------|
|               | (cm)     | (W/m.K)  | (m².K/W) |
| Double-       | 1.25     | 0.25     |          |
| sheet         |          |          |          |
| plasterboard, |          |          | 0,05     |
| Vapour        | 0.1      | 0.33     |          |
| barrier,      |          |          |          |
| tarpaulin     |          |          | 0,00303  |
| Rock wool -   | 7.5      | 0.034    |          |
| Extra white   |          |          |          |
| paint         |          |          | 2,205882 |
| Perforated    | 40       | 0.143    |          |
| block         |          |          | 2,797203 |
| Lime and      | 2.5      | 0.8      |          |
| sand render - |          |          |          |
| White         |          |          | 0,03125  |
| Double-       | 1.25     | 0.25     |          |
| sheet         |          |          |          |
| plasterboard  |          |          | 0,05     |
| Heat transfe  | er coeff | icient K |          |
| (W            | /m2.K)   |          | 0,187    |

$$K = \frac{1}{0,05+0,003+2,2+2,8+0,03+0,05+0.13+0.073}$$

### $K = 0.187 \text{ W/m}^2.\text{K}$

Using the same method and an Excel spreadsheet, we can determine the other thermal transmittance coefficients

Calculating wall losses

|                 |         | K     |                   | Т  |       |
|-----------------|---------|-------|-------------------|----|-------|
|                 | Envelo  | (W/m  | S                 | (K | Φ     |
| Remarks         | ре      | 2.K)  | (m <sup>2</sup> ) | )  | (W)   |
|                 | Wall 1  | 0,187 | 180               | 10 | 336,6 |
|                 | Wall 2  | 0,187 | 180               | 10 | 336,6 |
|                 | Wall 3  | 0,187 | 272               | 10 | 508,6 |
| Sunny walls     |         |       |                   |    | 4     |
| Wall in contact |         |       |                   |    |       |
| with an         |         |       |                   |    |       |
| unconditioned   |         |       |                   |    |       |
| room            | Wall 4  | 0,212 | 60,8              | 7  | 90,56 |
| Тор             |         |       |                   |    | 2692, |
| unconditioned   | Ceiling | 0,16  | 765               | 22 | 8     |
| In contact with |         |       |                   |    | 664,5 |
| the ground      | Floor   | 0,173 | 765               | 5  | 3     |
|                 | Windo   |       | 15,1              |    | 663,6 |
| 4 Windows       | ws      | 1,093 | 8                 | 10 | 7     |
|                 | French  |       |                   |    |       |
| three French    | windo   |       |                   |    | 150,9 |
| windows         | ws      | 1,3   | 3,87              | 10 | 3     |
|                 | 1       |       | I                 |    | 5444, |
|                 | Total   |       |                   |    | 33    |

2) Thermal bridges : Thermal bridges account for around 15% of total losses or 816W

3) Air renewal losses : The occupancy rate of the gym is 0.125 people/m<sup>2</sup>.

i.e. approximately 89 people with a usable surface area of 712 m<sup>2</sup>.

The occupancy rate of the gym is 0.125 people/m<sup>2</sup>.

i.e. approximately 89 people with a usable surface area of 712  $m^2$ .

• <u>Heat Sensitive</u>

QSen =  $qv \cdot (\theta e \cdot \theta i) \cdot 0.34$ 

Qsen = 7565 W

• Latent heat

 $QLat \ = \ qv \, . \, (\omega e \ - \ \omega i) \, . \, 0, 84$ 

Qlat = 15170.4 W

```
Q air renewal =15170.4+7565
```

```
Q air renewal =22735,4W
```

4) Solar heat gain : It is an important part

• <u>On the walls</u>

Qsunny walls =  $\alpha . F . S . Rm$ 

Q sunny walls = 1170 W

• On French windows

## Q sunny French windows = $\alpha$ . g . S . Rv

Q sunny French windows = 166W

• On the windows

Q windows =  $\alpha$  . g . S . Rv

Q Window = 730W

## Q solar gain= Q Window + Q sunny French windows

Q solar gain = 2066W

*5) Heat input from occupants* : The project recommends 64W/person for sensitive loads and 46W/person for latent loads.

• <u>Sensitive</u> loads QSensitive = n.CSensitive

Q sensitive input= 5696 W

• <u>Deferred contributions</u>

## QLatent = n . CLatent

Q latent contribution =3956

## Q latent contribution = Qlatent + Qsensitive

- Q occupant contribution = 9652W
- 6) Electrical heat input : It is load of Lighting and Electrical equipment

Q electric =  $\sum Qequipement$ 

Q electric = 14240 W

## TABLE 4 : HEAT BALANCE CALCULATION RESULTS SPORTS HALL

| Thermal loads          | [w]      |
|------------------------|----------|
| Envelope losses        | 5444,334 |
| Thermal bridges        | 816,650  |
| air renewal            | 22735,4  |
| solar gain             | 2066     |
| Occupant contributions | 9652     |
| Electrical inputs      | 14240    |
| Total                  | 54954,38 |

B-Heat balance with Edilclima [2]

*1)Basic data entry* : This section allows the entry of climatic data according to the location of the building; it also allows the selection of the calculation standard to be used and default data such as air exchange, occupancy density, thermal load per person and per equipment.

| Energia termica da collettori solari    |                                   |                        | 0,00                          | 0                     | 1,000  |           |        |
|-----------------------------------------|-----------------------------------|------------------------|-------------------------------|-----------------------|--------|-----------|--------|
| Energia elettrica prodotta da fotovolta | ico                               |                        | 0.00                          | 0                     | 1,000  |           |        |
| Energia termica da pompe di calore (E   | ires)                             |                        | 0.00                          | 0                     | 1,000  |           |        |
| Energia elettrica esportata da fotovolt | aico                              |                        | 0,00                          | 0                     | 1,000  |           |        |
|                                         |                                   |                        |                               |                       |        |           |        |
|                                         |                                   |                        |                               | _                     | F      | Roristina | a defa |
| Fattori di ombreggiamento p             | er extraflusso persor             | nalizzati              |                               |                       |        |           |        |
| N NE                                    | E                                 | SE S                   | SO O                          | NO                    |        | Orizzor   | ntale  |
| 100 100                                 | 100                               | 100 100                | 100 1                         | 00                    | 100    |           | 10     |
| Dati potenza estiva                     |                                   |                        |                               |                       |        |           |        |
| Temperatura bulbo secco                 | 25.0 🗸 °C                         | 1                      | Ricambio d'aria di picco      |                       |        | 1,00 🗸    | Ve     |
| Temperatura bulbo umido                 | 18,0 v °C                         |                        | Umidità relativa interna      |                       |        | 51,3 🗸    | 2 %    |
|                                         |                                   |                        |                               |                       |        |           | 2 💡    |
| Coefficiente di correzione solare       | 1,00                              | (                      | Dre funzionamento impianto ra | ffrescamento          | 12 ore |           |        |
| Coefficiente di correzione solare       | 1,00                              | (                      | Dre funzionamento impianto ra | ffrescamento          | 12 ore |           |        |
| Coefficiente di correzione solare       | 1,00                              | (<br>Potenza elettrica | Dre funzionamento impianto ra | ffrescamento<br>Altro | 12 ore |           |        |
|                                         | 1,00<br>0,125 pers/m <sup>2</sup> |                        | 20 W/m <sup>2</sup>           |                       |        |           | 0 W    |
| Persone                                 |                                   | Potenza elettrica      |                               | Altro                 |        |           | 0 W    |
| Persone<br>Numero di persone per m²     | 0.125 pers/m <sup>2</sup>         | Potenza elettrica      |                               | Altro<br>Q sensibile  |        |           |        |

Fig 3 Default project data

2) *Material characteristics input* : In this section, we enter the material components of walls, roofs, floors and windows, and model thermal bridges.

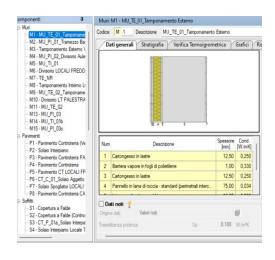



Fig 4:Wall layers

*3) Room data* : Once the building is modeled, the characteristics of each room have to been entred, if it has data other than the basic data.

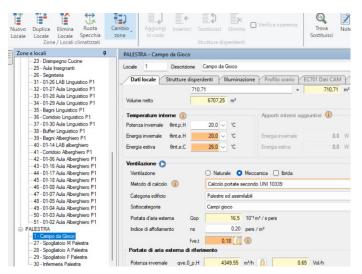



Fig 5 Gym data on EDILCLIMA

4) *Energy simulation* : Once all this data has been entered, the energy simulation can be carried out, with detailed results for each room and for the whole building.

| Zone                              | PALESTRA                                          |            | v                            | ⊧ H           |                   | Juillet<br>se di picco  | • • •         | O Con                        | di calcolo<br>fattore di ac<br>iza fattore di |           | <ul> <li>Azzera Q</li> <li>Considera</li> </ul> |                    | E C P                 | calcola    |
|-----------------------------------|---------------------------------------------------|------------|------------------------------|---------------|-------------------|-------------------------|---------------|------------------------------|-----------------------------------------------|-----------|-------------------------------------------------|--------------------|-----------------------|------------|
| Zona<br>Somn<br>Locale<br>Locale: | 2<br>nario Zone                                   |            |                              |               | ichi termici      | N                       | Desc          | itinna: Ca                   | mpo da Gioc                                   |           |                                                 |                    |                       |            |
| Temperal                          | tura bulbo se<br>tura bulbo um<br>elativa interna | ido:       | 25.0 °C<br>18.0 °C<br>51.3 % |               |                   | etto:<br>d'aria di pice |               | 710.7 m<br>6707,3 m<br>1,6 v |                                               |           |                                                 |                    |                       |            |
|                                   |                                                   | [          |                              | Scam          | bitermicip        | er ventilazi            | ione          |                              |                                               | Ca        | richi interr                                    | i 👘                |                       |            |
|                                   | Qirr<br>[W]                                       | QTr<br>[W] | Tba,rec<br>['C]              | UR,rec<br>[%] | Dh.lat<br>[kJ/kg] | Dh,sen<br>[kJ/kg]       | Qv,lat<br>[W] | Qv,sen<br>[W]                | Glat.pers<br>[W]                              | Qsen,pers | Qsen,elett.                                     | Altro Q lat<br>[W] | Altro Q<br>sen<br>[W] | Qgl<br>[W] |
| 10                                | 495                                               | 214        | 25,1                         | 60,7          | 5,0               | 0,2                     | 17876         | 847                          | 4087                                          | 5686      | 14214                                           | 0                  | 0                     | 43419      |
|                                   | 306                                               | 1424       | 26.7                         | 55,6          | 5,2               | 1,9                     | 18527         | 6781                         | 4087                                          | 5686      | 14214                                           | 0                  | 0                     | 51025      |
| 12                                |                                                   | 3019       | 27,9                         | 51,5          | 4,9               | 3,1                     | 17594         | 10991                        | 4087                                          | 5686      | 14214                                           | 0                  | 0                     | 56560      |
| 12<br>14                          | 969                                               |            |                              |               |                   |                         |               |                              |                                               |           |                                                 |                    |                       |            |
|                                   | 969<br>2252                                       | 4475       | 27,9                         | 51,5          | 4,9               | 3,1                     | 17594         | 10991                        | 4087                                          | 5686      | 14214                                           | 0                  | 0                     | 59299      |

Fig 6 Edilclima result of the gym

Referring to Edilclima results, the Thermal peak load is 59299W

### C-Energy simulation with Revit software [4]

1) Modelling architectural elements: The first step is to ensure that the architectural elements have the same technical specifications as the specifications (conductivity, thickness, etc.).

|           |               |                  |                               |        |           |   |      | 800 mma 1           |
|-----------|---------------|------------------|-------------------------------|--------|-----------|---|------|---------------------|
| dit Asse  | mbly          |                  |                               |        |           |   |      |                     |
| Family:   |               | Basic Wall       |                               |        |           |   |      |                     |
| Type:     |               | MUR 1            |                               |        |           |   |      |                     |
| Total thi | ckness:       | 52.60 (Default)  |                               |        |           |   |      | Sample              |
| Resistan  | ce (R):       | 5.1374 (m²·K)/W  |                               |        |           |   |      |                     |
| Thermal   | Mass:         | 286.13 kJ/(m²·K) |                               |        |           |   |      |                     |
| Layers    |               |                  |                               | EXTERI | OR SIDE   |   |      |                     |
|           |               | Function         | Material                      |        | Thickness | W | raps | Structural Material |
| 1         | Finish 1 [4   | ]                | Cartongesso doppia lastra,    | 1.25   |           |   |      |                     |
| 2         | Thermal/A     | Air Layer [3]    | Barriera al vapore, telo      | 0.10   |           |   |      |                     |
| 3         | Substrate     | [2]              | Lana di roccia - Verniciatura | 7.50   |           |   |      |                     |
| 4         | Core Bou      | indary           | Layers Above Wrap             | 0.00   |           |   |      |                     |
| 5         | Structure     | [1]              | Blocco forato                 | 40.00  |           |   |      |                     |
| 6         | Core Bou      | indary           | Layers Below Wrap             | 0.00   |           |   |      |                     |
| 7         | Substrate [2] |                  | Intonaco di calce e sabbia -  | 1.50   |           |   |      |                     |
| 8         | Substrate     | [2]              | Intonaco di calce e sabbia -  | 1.00   |           |   |      |                     |
| 9         | Finish 1 [4   | 1                | Cartongesso doppia lastra,    | 1.25   |           |   |      |                     |

### Fig 7 wall properties

1) *Space data :* After faithfully reproducing the dimensions of the sports hall on Revit, we move on to the entrance to the hall's technical facilities. At this point we need to create spaces in Revit and give these different spaces their own characteristics

| CUCINA<br>Decenza: ospedale/struttura sanitaria                                                    | Parameter                     | Value                                                       |  |  |  |
|----------------------------------------------------------------------------------------------------|-------------------------------|-------------------------------------------------------------|--|--|--|
| Dettaglio: impianto di produzione<br>Elettrico/meccanico                                           | Identity Data                 |                                                             |  |  |  |
| Eletrico/meccanico<br>Esami/cure: ospedale/struttura sanitaria                                     | Design Option                 | Main Model                                                  |  |  |  |
| Farmacia: ospedale/struttura sanitaria<br>Fisioterapia: ospedale/struttura sanitaria               | Energy Analysis               |                                                             |  |  |  |
| Laboratorio: laboratorio<br>Laboratorio: stazione di polizia/pompieri                              | Area per Person               | 8.000                                                       |  |  |  |
| Laboratorio: ufficio                                                                               | Sensible Heat Gain per person | 64.00 W                                                     |  |  |  |
| Lavanderia/lavaggio: ospedale/struttura sanitaria<br>Lavanderia: stireria e smistamento            | Latent Heat Gain per person   | 46.00 W                                                     |  |  |  |
| Locali dei giudici: tribunale                                                                      | Lighting Load Density         | 6.46 W/m <sup>2</sup>                                       |  |  |  |
| Magasino stockage locale frigo et dispenza<br>Magazzino inutilizzato                               | Power Load Density            | 13.81 W/m <sup>2</sup><br>0.00 L/(s-m <sup>2</sup> )        |  |  |  |
| Magazzino utilizzato<br>Magazzino utilizzato: ospedale/struttura sanitaria                         | Infiltration Airflow per area |                                                             |  |  |  |
| Magazzino unitzzato: ospedarej su uttura sanitaria<br>Materiali medio/grandi: magazzino            | Plenum Lighting Contribution  | 0.0000%                                                     |  |  |  |
| Materiali pregiati: magazzino<br>Museo e galleria d'arte - Magazzino - Museo e galleria            | Occupancy Schedule            | Occupazione di vendita al dettaglio - dalle 7:00 alle 20:00 |  |  |  |
| Ospedale/forniture mediche: ospedale/struttura sanita                                              | Lighting Schedule             | Illuminazione vendita al dettaglio - dalle 7:00 alle 20:00  |  |  |  |
| Ospedale/nido: ospedale/struttura sanitaria<br>Ospedale/radiologia: ospedale/struttura sanitaria   | Power Schedule                | Illuminazione vendita al dettaglio - dalle 7:00 alle 20:00  |  |  |  |
| Palestra area di gioco                                                                             | Outdoor Air per Person        | 2.36 L/s                                                    |  |  |  |
| Palestra ediicilma<br>Posti a sedere: arena sportiva                                               | Outdoor Air per Area          | 0.30 L/(s·m <sup>2</sup> )                                  |  |  |  |
| Posti a sedere: auditorium<br>Posti a sedere: centro congressi                                     | Air Changes per Hour          | 2.100000                                                    |  |  |  |
| Posti a sedere: centro sportivo                                                                    | Outdoor Air Method            | by ACH                                                      |  |  |  |
| Posti a sedere: cinema<br>Posti a sedere: luogo religioso                                          | Heating Set Point             | 20.00 °C                                                    |  |  |  |
| Posti a sedere: palestra                                                                           | Cooling Set Point             | 26.00 °C                                                    |  |  |  |
| Posti a sedere: penitenziario<br>Posti a sedere: stazioni di polizia/pompieri                      | Humidification Set Point      | 50.0000%                                                    |  |  |  |
| Posti a sedere: stazioni ui ponzia/pompieri<br>Posti a sedere: teatro<br>Posti a sedere: trihunale | Dehumidification Set Point    | 70.0000%                                                    |  |  |  |

Fig 8 Characteristics of the gym

2) Results of gym simulation: On the follow image

| Zone Load Sumr                                                                        | nary       | 00-50-2 Area gio                                                                                                                                        | 000-2 COOLING                                                                         |                        |                |                                                                        |  |  |
|---------------------------------------------------------------------------------------|------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|------------------------|----------------|------------------------------------------------------------------------|--|--|
| CONDITIONS AT TIME OF PEAK                                                            | t .        | ENGINEERING CHEC                                                                                                                                        |                                                                                       | Peak Loads [W]         | Coo            | ling Load Components [W]                                               |  |  |
| Time at Poak: 8/2115:00.00<br>Outside<br>DB: 35.1 C<br>HR: 0.0110 kg/kg<br>WB: 21.8 C |            | Capacity per Floor Area:<br>Floor Area per Capacity:<br>Outdoor Air Percentage<br>Airflow per Floor Area:<br>Airflow per Capacity:<br>Number of People: | 75.50 W/m2<br>13.24.54 m2/kW<br>98.89 %<br>3.073093 (s-m2<br>52.625180 l/s-KW<br>92.0 |                        | 07 e<br>20276- | 4714 J2760 J2760                                                       |  |  |
| Zone<br>DB: 26.0 C<br>HR: 0.0100 kg/kg<br>RH: 46.9 %                                  |            |                                                                                                                                                         |                                                                                       | 108569<br>Cooling Heat |                | 58370<br>nduction Solar Equipment<br>ights People Outdoor Air<br>Other |  |  |
|                                                                                       |            | Instant Sensible [W]                                                                                                                                    | Delayed Sensible [W]                                                                  | Latent [W]             | Total [W]      | Percent of Total [%]                                                   |  |  |
| Envelope                                                                              |            |                                                                                                                                                         |                                                                                       |                        |                |                                                                        |  |  |
| Roof                                                                                  |            |                                                                                                                                                         | 0                                                                                     |                        | 0              | 0.0                                                                    |  |  |
| Other - Roof                                                                          |            |                                                                                                                                                         | 0                                                                                     |                        | 0              | 0.0                                                                    |  |  |
| Ceiling                                                                               |            |                                                                                                                                                         | -517                                                                                  |                        | -517           | -0.9                                                                   |  |  |
| Glass - Conduction                                                                    |            | 0                                                                                                                                                       |                                                                                       |                        | 0              | 0.0                                                                    |  |  |
| Glass - Solar                                                                         |            |                                                                                                                                                         | 0                                                                                     |                        | 0              | 0.0                                                                    |  |  |
| Door                                                                                  |            |                                                                                                                                                         | 10                                                                                    |                        | 10             | 0.0                                                                    |  |  |
| Wall                                                                                  |            |                                                                                                                                                         | 0                                                                                     |                        | 0              | 0.0                                                                    |  |  |
| Below-grade Wall                                                                      |            |                                                                                                                                                         | -452                                                                                  |                        | -452           | -0.8                                                                   |  |  |
| Partition                                                                             |            |                                                                                                                                                         | -40                                                                                   |                        | -40            | -0.1                                                                   |  |  |
| Other - Wall                                                                          |            |                                                                                                                                                         | 0                                                                                     | -                      | 0              | 0.0                                                                    |  |  |
| Exterior Floor                                                                        |            |                                                                                                                                                         | 0                                                                                     |                        | 0              | 0.0                                                                    |  |  |
| Interior Floor                                                                        |            |                                                                                                                                                         | 0                                                                                     |                        | 0              | 0.0                                                                    |  |  |
| Slab                                                                                  |            |                                                                                                                                                         | -11,740                                                                               |                        | -11,740        | -21.3                                                                  |  |  |
| Other - Floor                                                                         |            |                                                                                                                                                         | 0                                                                                     |                        | 0              | 0.0                                                                    |  |  |
| Infiltration                                                                          |            | 0                                                                                                                                                       |                                                                                       | 0                      | 0              | 0.0                                                                    |  |  |
|                                                                                       | Subtotal   | 0                                                                                                                                                       | -12,740                                                                               | 0                      | -12,740        | -23.1                                                                  |  |  |
| Internal Gains                                                                        |            |                                                                                                                                                         |                                                                                       |                        |                |                                                                        |  |  |
| People                                                                                |            | 4,122                                                                                                                                                   | 1,924                                                                                 | 4,232                  | 10,278         | 18.7                                                                   |  |  |
| Lights                                                                                |            | 4,714                                                                                                                                                   | 0                                                                                     |                        | 4,714          | 8.6                                                                    |  |  |
| Return Air - Lights                                                                   |            | 0                                                                                                                                                       |                                                                                       |                        | 0              | 0.0                                                                    |  |  |
| Equipment                                                                             |            | 14,598                                                                                                                                                  | 0                                                                                     | 0                      | 14,598         | 26.5                                                                   |  |  |
| -4-4-4                                                                                | Subtotal   | 23,434                                                                                                                                                  | 1,924                                                                                 | 4,232                  | 29,590         | 53.7                                                                   |  |  |
| Systems                                                                               |            |                                                                                                                                                         |                                                                                       |                        |                |                                                                        |  |  |
| Zone Ventilation                                                                      |            | 29.721                                                                                                                                                  |                                                                                       | 8.649                  | 38.370         | 69.6                                                                   |  |  |
|                                                                                       |            |                                                                                                                                                         |                                                                                       |                        |                |                                                                        |  |  |
| Transfer Air                                                                          |            | 0                                                                                                                                                       |                                                                                       | 0                      | 0              | 0.0                                                                    |  |  |
| DDAS Direct to Zone<br>Return Air - Other                                             |            | 0                                                                                                                                                       |                                                                                       | 0                      | 0              | 0.0                                                                    |  |  |
|                                                                                       |            |                                                                                                                                                         |                                                                                       |                        |                |                                                                        |  |  |
| Power Generation Equip                                                                | ment       | 0                                                                                                                                                       | 0                                                                                     | -                      | 0              | 0.0                                                                    |  |  |
| Refrigeration                                                                         |            | 0                                                                                                                                                       |                                                                                       | 0                      | 0              | 0.0                                                                    |  |  |
| Water Use Equipment                                                                   |            | 0                                                                                                                                                       | -                                                                                     | U                      | 0              | 0.0                                                                    |  |  |
| HVAC Equipment Loss                                                                   | Subtotal   | 29.721                                                                                                                                                  | 0                                                                                     | 8,649                  | 38,370         | 0.0<br>69.6                                                            |  |  |
|                                                                                       | Subtotal   | 29,721                                                                                                                                                  | U                                                                                     | 8,049                  | 38,370         | 09.6                                                                   |  |  |
| Total                                                                                 |            |                                                                                                                                                         |                                                                                       |                        |                |                                                                        |  |  |
| Sizing Factor Adjustmen                                                               | t          | 0                                                                                                                                                       |                                                                                       |                        | 0              | 0.0                                                                    |  |  |
| Time Delay Correction                                                                 |            |                                                                                                                                                         | -113                                                                                  |                        | -113           | -0.2                                                                   |  |  |
| G                                                                                     | rand Total | 53,155                                                                                                                                                  | -10,929                                                                               | 12,881                 | 55,107         | 100.0                                                                  |  |  |

### Fig 9 Revit result

### III. VALIDATION OF THEORETICAL/SIMULATION RESULTS

According to the 3 methods adopted, results of the Thermal peak load are as follows

| Table 5                    |         |
|----------------------------|---------|
| Energy balance for the gym |         |
| Manual energy balance      | 54955 W |
| calculation                |         |
| Energy simulation with     | 59299W  |
| EDILCLIMA                  |         |
| Energy simulation with     | 55107W  |
| REVIT                      |         |

EDILCLIMA compared with REVIT

 $\frac{59299-54955}{59299}*100=7.3\%$ 

Comparison between EDILCLIMA and manual calculation

$$\frac{59299 - 55107}{59299} * 100 = 7.1\%$$

✤ Comparison of REVIT and manual calculation

 $\frac{55107 - 54955}{55107} * 100 = 0.27\%$ 

The results of the Revit and manual simulations are very Close. The Edilclima result is slightly higher by 7%.

### **IV. INTERPRETATIONS**

Comparison of the simulation results between Revit, manual calculations and Edilclima software shows that the results obtained with Revit and manual calculation methods are very close, while those obtained with Edilclima are slightly higher by 7%. This difference can be explained by several technical reasons linked to the specificities and methodologies of the software.

### ✤ Accuracy of local standards and regulations:

Edilclima is a specialized software for the Italian market, and is designed to comply rigorously with Italian energy standards. Italian regulations may require higher safety margins or more detailed calculation methods, which can lead to more conservative results. This means that parameters such as heat transfer coefficients, thermal bridge correction factors, or safety coefficients can be adjusted more strictly in Edilclima.

### Calculation Methodology and Simulation Assumptions:

Energy simulation software, such as Edilclima, uses methodologies that can include additional correction factors and more specific calculation parameters that are not taken into account in basic manual calculations or in Revit. For example, Edilclima can take into account local micro-climatology, the thermal inertia of materials, or specific ventilation and infiltration scenarios, which can lead to slightly higher results.

### ✤ Modeling and Data Granularity:

The granularity of modeling data in Edilclima can be finer than in Revit. This means that Edilclima can model more details in a building's structure, such as insulation layers, interfaces between different materials, and glazing types. A more detailed model often results in a more accurate and sometimes higher estimate of energy consumption, by incorporating elements that manual calculations or tools like Revit might simplify or ignore.

### Simulation scenarios and usage profiles:

Edilclima can offer more advanced simulation capabilities that take into account more varied usage scenarios and more specific occupancy profiles. For example, it could model finer variations in lighting, heating or airconditioning usage according to time of day or season, which could also lead to higher energy consumption results.

In summary, the slight 7% increase in Edilclima results compared to Revit or manual calculations can be attributed to a combination of factors, including the rigor of local standards, the complexity of calculation assumptions, the granularity of modeling data, and the sophistication of simulation scenarios. These elements enable Edilclima to provide a more specific and potentially more accurate energy assessment for buildings in Italy.

### REFERENCES

[1]: Project specifications and special conditions

[2] :Edilclima, https://www.edilclima.it/.

[3] : Specifications for the calculation of an air-conditioning heat balance,

http://technolascasc.free.fr/ARED/MURET/Methode\_charge\_thermique.pdf

[4] : Simulation énergétique Revit,» Autodesk,

https://blogs.autodesk.com/villagebim/2023/03/comprendre-autodesk-revit-le-modele-analytiquedenergie.html