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Abstract— This study investigates the effect of annealing temperature on the thermoelectric performance of 4% 

Sb-doped CuInS₂ thin films deposited via thermal evaporation at substrate temperatures of ambient, 100°C, and 

200°C. Using the PhotoThermal Deflection (PTD) method, thermal conductivity was found to increase with 

annealing temperature, while thermal diffusivity decreased. Electrical conductivity also rose from 4.5 S/cm to 13.9 

S/cm. Films annealed at 200°C exhibited the best thermoelectric performance. The research highlights a 

systematic approach to optimizing Sb-doped CuInS₂ thin films, offering insights for future studies on Seebeck 

coefficients and figure of merit (zT) to advance thermoelectric materials. 
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I. INTRODUCTION 

The energy crisis and the associated environmental issues are major challenges in today's rapidly changing 

world, where the demand for electricity is increasing. To address these challenges, the required energy 

conversion systems should possess scalability and reliability as their two main desired features. To achieve 

this goal, ongoing research is being conducted to develop such systems, although it is not as simple as it may 

seem [1-4]. 

One of the energy systems that has garnered significant attention in recent years is the thermoelectric 

generator (TEG). This device is a type of heat engine that has the potential to offer solutions to the 

aforementioned challenges. The advantages of such devices are numerous: they are environmentally friendly, 

highly scalable, reliable, and have long lifespans for dependable operation [5-8]. This solid-state device can 

directly convert thermal energy from sources such as solar systems, factories, power plants, computers, and 

even human bodies into electrical power using the Seebeck effect [9-16]. However, the practical applications 

of TEG are hindered by low conversion efficiencies primarily attributed to the intrinsic properties of 

thermoelectric (TE) materials.  

TE materials constitute a large family of materials, including those from semimetals and semiconductors to 

ceramics, encompassing various dimensions from bulk, films, and wires to clusters. TE materials are 

considered promising candidates for easing the energy crisis due to their capacity to convert waste heat into 

electricity based on Seebeck, Peltier, and Thomson effects. Ideally, a good TE material should have low 

thermal conductivity, high electrical conductivity, and a high Seebeck coefficient [17-19]. Within this context, 

many researchers have drawn attention to semiconducting materials, particularly those having properties 

similar to chalcopyrite CuInS2 (CIS) of the I-III-VI2 group. These materials are promising TE materials due 

to their potential for low environmental impact, high chemical stability, and potential use in solar energy 

conversion [20-24]. 

Several studies have shown that the properties of CuInS2 thin films can be improved by optimizing 

deposition conditions and doping. For instance, Ben Rabeh et al. [21, 22] examined the effects of antimony 

incorporation on the structural, optical and electrical properties of CuInS2 thin films, revealing that Sb-doped 

samples post-annealing have a bandgap energy of 1.38-1.51 eV. It was also found that only CuInS2 samples 
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doped with a high Sb incorporation (4 wt%) exhibit p-type conductivity. Similarly, Mobarak et al. [24] 

investigated the electrical and thermoelectric properties of CuInS2 single crystals, characterizing them 

structurally using X-ray diffraction. Their analysis confirmed that CuInS2 compounds have a tetragonal 

structure with a single phase, and they identified an energy gap of 1.51 eV, indicating the potential for these 

single crystals to be utilized as solar energy converters.  

Further, Akaki et al. [25] studied the structural, electrical, and optical properties of Sb-doped CuInS2 thin 

films. They demonstrated that polycrystalline CuInS2 films could be successfully obtained by annealing above 

200 °C and found that Sb-doped CuInS2 thin films approached stoichiometry compared to non-doped samples. 

More recently, Giri et al. [26] explored the thermoelectric properties of CuInS2, revealing a maximum zT 

value of 1.04 10-4 at 800K and an absolute Seebeck coefficient of -30 μV/K at 300K. This suggests that 

CuInS2 has high potential for thermoelectric power generation. However, further research is needed to 

enhance these properties using suitable dopants to achieve a high zT value. 

This study focuses on enhancing the thermoelectric performance of CuInS₂ thin films through antimony (Sb) 

doping and optimized annealing. Sb is chosen as a dopant for its ability to improve electrical conductivity and 

the Seebeck coefficient [27] while maintaining carrier mobility [28]. Additionally, Sb modifies the band 

structure and reduces thermal conductivity via phonon scattering, enhancing the thermoelectric figure of merit 

(zT) [29]. The Photothermal Deflection (PTD) method was used to characterize thermal properties, as it 

provides accurate measurements of thermal conductivity and diffusivity simultaneously. The results 

demonstrate that Sb-doped CuInS₂ thin films annealed at 200°C exhibit the most promising thermoelectric 

performance, with significant improvements in electrical conductivity and thermal properties. This research 

contributes to the development of efficient thermoelectric materials and paves the way for future studies on 

optimizing the Seebeck coefficient and figure of merit (zT) for advanced TEG applications. 

II. PHOTOTHERMAL DEFLECTION TECHNIQUE 

The PhotoThermal Deflection (PTD) technique was used to characterize the thermal properties of Sb-doped 

CuInS₂ thin films. This non-destructive, contactless method ensures accurate measurements without damaging 

the samples, which is crucial for maintaining structural integrity. Unlike techniques such as Photopyroelectric 

(PPE) [30] and Electropyroelectric (EPE) [31-32], PTD excels in simultaneously measuring thermal 

conductivity and diffusivity [33-35] and provides reliable results consistent with theoretical models [36]. 

The PTD technique operates on the principle of the "mirage effect." A modulated light beam heats the 

sample, generating a thermal wave that propagates through both the sample and the surrounding fluid. This 

thermal wave induces a temperature gradient, which in turn creates a refractive index gradient in the fluid. As 

a laser probe beam passes through the fluid, it is deflected due to this refractive index gradient. To quantify 

the deflection, the temperature at the sample's surface is first determined, enabling the calculation of the 

refractive index gradient. This approach allows for precise and non-destructive measurement of thermal 

properties, making it ideal for characterizing Sb-doped CuInS₂ thin films. 

A. Theoretical Model 

The theoretical model is constructed by solving the heat equations within distinct media layers: fluid (f), 

sample (s), and backing (b) (Fig. 1), while ensuring continuity of temperature and heat flow across different 

interfaces (b/s, s/f). 
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Fig. 1 Schematic representation of the probe beam deflection. 

Given the uniform heating of the probe, our approach considers a one-Dimensional (1-D) heat treatment. 

The deflection of the probe beam ( ) can be derived through the Eq. 2. 
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where: 

     
 

  
 represents the thermal diffusion length, indicating the penetration depth of the 

thermal wave through the sample, 

    is the distance between the probe beam axis and the sample surface, 

   is the modulation frequency. 

The elevation temperature of the sample surface, denoted as   , is expressed as: 

        
   (4) 

where    and   represent the amplitude and phase of   , respectively, which are functions of the thermal 

conductivity (k) and thermal diffusivity (D) of the studied samples [37,38]. 

B. Experimental Set-Up 

The experimental set-up, depicted in Fig. 2 and detailed in [39], consists mainly of a 100 W halogen lamp, 

with its light modulated by an SR530 mechanical chopper, which is then focused onto the sample surface. A 

He-Ne laser probe beam, with a wavelength of 632.8 nm, scans the surface and undergoes deflection. 

The deflected beam is measured by a four-quadrant photodetector (QD50T), linked to a lock-in amplifier 

(EG&G5210). The frequency   of the mechanical chopper can be adjusted via an IEEE bus intermediary, 

controlled by a PC microcomputer. 

 
Fig. 2 PTD experimental set-up. 

1-Table of horizontal and vertical micrometric displacement, 2-Sample, 3-position photodetector, 4-fixed Laser Source, 5-halogen Lamp, 6-look-in 

amplifier, 7-Mecanical Chopper, 8-PC. 

III. ELECTRICAL CHARACTERIZATION 

In addition to thermal characteristics, the electrical properties play a crucial role in the performance of Sb-

doped CuInS₂ thin films. To evaluate these properties, specific methods were employed to analyze 

conductivity and resistivity. The hot probe method [40] was used to determine the type of conductivity (p-type 

or n-type) by placing a heated probe in contact with the film. Meanwhile, the resistivity of the films was 

measured using a digital universal meter, providing accurate resistance measurements, which were then used 
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to calculate the resistivity based on the film's geometry. These electrical measurements are essential for 

understanding and optimizing the overall thermoelectric performance of the material. 

IV. RESULTS AND DISCUSSION 

The results of this study involved comparing the experimental phase curves obtained from PTD 

measurements with theoretical curves by varying the values of thermal conductivity (k) and thermal 

diffusivity (D). The optimal match between the experimental and theoretical curves was achieved by adjusting 

these thermal properties. 

Figs. 3, 4 and 5 depict the experimental (data points) and theoretical (lines) variations of phase against the 

square root of the modulation frequency ( ) for Sb-doped CuInS2 (Ts = Ta), CuInS2 (Ts = 100°C), and CuInS2 

(Ts = 200°C). The theoretical phase curves correspond to specific values of thermal properties outlined for 

each sample.  

The uncertainties ( ) in the thermal coefficients were estimated by examining the maximum and minimum 

values until the best agreement between theoretical and experimental data was achieved, by means of the 

following formula provided in [41]: 

  
       

   
 (5) 

The phase curves clearly display a plateau at low frequencies (f < 15Hz) and a subsequent decline at higher 

frequencies, consistent with the theoretical predictions for optically opaque samples [42], as indicated by the 

equation above. 

 
Fig. 3 Variation of PTD signal phase (degree) of Sb-doped CuInS2 (Ts = Ta) as a function of the square root of frequency for k = 0.035 Wm-1K-1. 

 
Fig. 4 Variation of PTD signal phase (degree) of Sb-doped CuInS2 (Ts = 100°C) as a function of the square root of frequency for k = 0.055 Wm-1K-1. 
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Fig. 5 Variation of PTD signal phase (degree) of Sb-doped CuInS2 (Ts = 200°C) as a function of the square root of frequency for k = 0.075 Wm-1K-1. 

In this study, we focus on enhancing the thermoelectric performance of CuInS₂ thin films through antimony 

(Sb) doping and optimized annealing processes. The efficiency of thermoelectric (TE) materials principally 

depends on the figure of merit (zT), which serves as the performance index for a TE material and is defined by: 

          (6) 

where the parameters  ,  ,  , and   represent the Seebeck coefficient, electrical conductivity, absolute 

temperature, and total thermal conductivity that is the sum of the electronic (  ) and lattice (  ) parts mainly. 

The search for excellent TE materials primarily entails identifying materials with the highest figure of merit 

(zT). To increase the zT value, it is essential to improve the power factor (   ) while simultaneously reducing 

the total thermal conductivity ( ). However, these three parameters ( ,  , and  ) are connected and depend on 

carrier concentration, making independent adjustment of these parameters challenging.  

The thermal conductivity of undoped CuInS₂, as reported in the literature, is approximately 0.4 Wm
-1

K
-1

 

[43]. For the Sb-doped CuInS₂ samples, the thermal properties are summarized in Table 1, showing consistent 

results with previous studies that investigated the impact of doping and annealing on the thermal 

characteristics of SnₓSb₂Sᵧ sulfosalt thin films (1≤x≤3, 4≤y≤6) using the Electro-PyroElectric method [44]. 

The thermal conductivity consists of contributions from both electronic (  ) and lattice (  ) components. 

As electrical conductivity increases, the electronic contribution to thermal conductivity (  ) also tends to 

increase, which can explain part of the observed rise in thermal conductivity with higher annealing 

temperatures. However, the overall thermal conductivity is also affected by lattice vibrations (phonons), which 

are independent of electrical carriers and can be influenced by doping and microstructural changes induced by 

annealing. 

Table 1: Thermal and electrical properties of annealed Sb-doped CuInS2 thin films. 

substrate annealing temperature Ts (°C) Ta 100 200 

Thickness L (m) 1.44 1.57 1.56 

Thermal conductivity k (Wm
-1

K
-1

) 0.035 0.055 0.075 

Thermal diffusivity D (m
2
s

-1
) 1.9 10

-6
 1.5 10

-6
 0.65 10

-6
 

Electrical conductivity  (Scm
-1

) 4.5 7.2 13.9 

Ratio     (WK
-1

S
-1

) 7.7 10
-5

 6.9 10
-5

 5.4 10
-5

 

The electrical conductivity ( ) of Sb-doped CuInS₂ thin films increased significantly from 4.5 S/cm at 

ambient temperature to 13.9 S/cm at 200°C (Table 1). This improvement is attributed to thermal annealing, 

which enhances atomic diffusion, reduces defects, and improves crystallinity. The stability of donor and 

acceptor impurity concentrations during Sb-doping process also contributes to maintaining high conductivity. 

These findings align with Akaki et al. [25], highlighting the importance of thermal treatment in optimizing 

electrical performance. Thermal conductivity ( ) values, though low compared to electrical conductivity, 
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follow a consistent pattern. This is advantageous for thermoelectric applications, as low thermal conductivity 

combined with high electrical conductivity enhances the figure of merit (zT) of the material. The ratio of 

thermal to electrical conductivity (   ), which is a critical indicator of thermoelectric performance, was 

notably small for thin films annealed at 200°C, indicating their potential for efficient thermoelectric 

applications. 

It is essential to acknowledge that thermal annealing modifies the atomic structure, influencing defects and 

atomic disorder. These changes affect thermal heat capacity and electrical resistivity through electron-phonon 

interactions, underscoring the complex behavior of solid-state materials under varying thermal conditions. 

V. CONCLUSIONS 

This study provides a comprehensive analysis of the impact of annealing temperature on the thermoelectric 

performance of Sb-doped CuInS₂ thin films, utilizing the PhotoThermal Deflection (PTD) technique for 

precise thermal property measurements. Our results, consistent with prior research, reveal significant 

improvements in both electrical and thermal conductivity at higher annealing temperatures, emphasizing the 

critical role of controlled thermal treatment in optimizing thermoelectric materials. 

To build on these findings, future work should focus on measuring the absolute Seebeck coefficient to 

refine the Figure of Merit (zT) and explore time-dependent structural changes and atomic disorder induced by 

annealing. Advanced characterization techniques could also provide deeper insights into vibrational modes 

and their relationship with thermoelectric properties, offering a more complete understanding of annealing 

effects on material behavior. 

In conclusion, the enhanced thermoelectric performance of Sb-doped CuInS₂ thin films underscores the 

importance of optimized annealing processes. These findings not only validate the potential of Sb-doped 

CuInS₂ for thermoelectric applications but also lay the groundwork for future research to further refine zT 

values and advance the development of efficient thermoelectric materials. 
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