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      Abstract—The Internal Model Control (IMC) design 

based on the use of a specific inverse model was extended to the 

case of multivariable linear underactuated systems. This work 

deals with the effect of initial conditions on the IMC of 

multivariable linear underactuated systems behavior. The 

simulation results will be presented in this paper to show that 

initial conditions do not affect the ability of this control approach 

to ensure stability, accuracy and disturbance rejection. 
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I. INTRODUCTION 

Multivariable system control is extremely important in 
industrial applications, so it becomes one of the most important 
research domains. 

The internal model control is one of the most interesting 
and powerful multivariable system control approaches. It is 
characterized by its robustness and simplicity.  

IMC concept was proposed in 1982 for single-input single-
output systems by Garcia and Morari and it was extended to 
multi-input multi-output systems in 1985 [3, 8, 9]. The study 
was extended to the case of multivariable underactuated 
systems where the number of system inputs is less than the 
number of system outputs. The realized research treats the 
effects of the control input on the IMC underactuated system 
evolution. The obtained results were very encouraging which 
led us to treat the case of the initial conditions’ effect. 

We propose in this paper the IMC designed for linear 
multivariable underactuated systems such that initial conditions 
are taken into account; we present the effectiveness of this 
approach to ensure stability and preserve system performance 
despite the presence of external disturbances.               

 The realized work will be described in this paper through 
four sections. The second section presents a brief description of 
the basic IMC structure, the third section describes the 
proposed approach and the final section presents the simulation 
results. 

II. IMC STRUCTURE DESCRIPTION 

 The internal model control is a robust control structure 
using the feedback concept.  

The IMC basic configuration shown in Fig. 1, includes an 
internal model which is an explicit model of the plant, a 
controller which can be chosen the inverse of the process 
model and, if necessary, a filter [1, 7]. 

 

 

 

 

 

 As shown in Fig. 1, C(s) is the IMC controller, M(s) the 
chosen model, r the reference signal, v the disturbance signal 
affecting the system outputs and u is the control input signal. y 
is the process output signal, ym the model output signal  and d is 
the difference between y and ym. d represents also the 
disturbances effect and modeling errors. It is compared to the 
reference signal r to generate the controller input signal e [4, 
9]. 

The IMC design is based on a specific principle of 
inversion which represents the main problem of this control 
approach. In fact, the realization of the direct model's inverse is 
difficult for many physical systems. This difficulty is due to the 
denominator order which is usually greater than the numerator 
one on the model expression or to the presence of unstable 
zeros or/and time delay [7, 5, 6, 1]. 

III. IMC  FOR MULTIVARIABLE UNDERACTUATED SYSTEMS          

The objective of the multivariable systems control is to 
manipulate simultaneously several input channels in order to 
obtain a desirable behavior of several output variables. Indeed, 
the system output parameters have to reach its input parameters 
despite the presence of non-controllable disturbances affecting 
the system [2, 9]. 

 
Fig. 1. IMC basic structure. 
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The systems where the number of inputs is less than the 
outputs one are called underactuated systems. The IMC design 
defined for these systems was proposed in [9]; it’s illustrated in 
Fig. 2 

 

 

 

 

 

where G(s) is the system transfer matrix and M(s) is the 
descriptive matrix of the model. M is chosen close to G. The 
proposed controller C(s) is obtained using the inversion method 
proposed in [7, 1] as shown in Fig. 3 

 

 

 

where A1 is a matrix gain chosen to ensure the stability 
condition and A2 is a matrix gain used to compensate the static 
error [7, 1, 2, 9]. C(s) and A2 expressions are given by (1) and 
(2) [7, 1, 2, 9] 

                1

1 1C(s) A ( I A M(s))                                (1) 

              1

2 1 10 0A ( I A M( ))( A M( ))                          (2) 

where M(0) is the static matrix gain of the chosen model M. 

The stability of the system depends of both model M and 
controller C. The system is stable if and only if each block of 
the IMC structure is stable in open loop. That means the 
denominator of each transfer function of the model matrix M 
should be a Hurwitz polynomial. To ensure the stability of the 
controller C, it’s necessary to choose the matrix A1 for which 
the characteristic roots of the denominator of the blocs Cij have 
to be negative real part [1, 7, 2, 9]. 

The inversion problem requires that the matrix M must be 
square [7, 1, 2, 9], but the underactuated system’s transfer 
matrix G expressed by (4) is of dimension (n   m), where n is 
the system’s outputs number, m is the system’s inputs number 
and m is less than n. The realized research in [9] proposes a 
solution to solve this problem by adding (n  (n m)) transfer 
functions to the matrix M in order to make it a square matrix of 
dimension (n   n) (expressed by (5)), then a new function used 
to eliminate the (n m) excess control inputs is added to the 
basic IMC structure as shown in Fig. 2. The following vector 
represents the obtained control input vector after inserting the 
added function [9] 
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The study developed in [9] treated the influence of the 
control input signal on the system behavior; in fact, the excess 
control inputs acting on the added bloc of the matrix M were 
eliminated as was explained previously. The obtained results 
were very encouraging which led us to treat the case of the 
initial conditions in order to show their effect on the system 
evolution. 

The system transfer matrix representation developed in [9] 
do not reveal what will happen if the system is not initially 
relaxed [10]. This fact led us to translate the results obtained in 
[9] to the state-space representation. Therefore, the system can 
be described by the following state-space 
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where 

 x(t) : The system state vector of dimension (p   1); 

  y(t) : The system output vector of dimension (q   1); 

 u(t) : The control input vector of dimension (l   1); 

 A :  The state matrix of dimension (p   p); 

 B : The control matrix of dimension (p   q); 

 C : The observation matrix of dimension (q   p); 

 D : The direct transmission matrix of dimension (q  l ); 

 
0x  : The initial state vector of dimension (p   1). 

IV. APPLICATION( EFFECTS OF INITIAL CONDITIONS) 

In order to show the effects of the initial state vector on the 
behavior of the IMC underactuated systems, let’s consider the 
case of the one input/two outputs system proposed in [9]. It’s 
represented by the following transfer matrix G(s) and modeled 
by the following matrix M(s) [9]. 
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With  1 2

T
y y y is the system output vector and the 

reference vector r is chosen step of amplitude 1. 

 

Fig. 2. IMC structure for multivariable underactuated systems. 

system. 

 

 
Fig. 3. The proposed IMC controller. 

 



 

 

The case of disturbed system is considered in order to show 
a significant improvement of the velocity, the accuracy and the 
disturbance rejection capability of the proposed IMC 
configuration despite the non-null system’s initial conditions. 
The disturbance vector expression is given by (8). 
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As we noted on the previous section, we convert the system 
transfer matrix representation into an equivalent state-
space representation. The state-space representations (in the 
canonical form) of the process and its model are given by (9) 
and (10). 
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In order to test the proposed approach, several measures of 
the model’s initial state vector will be taken in the following. 

 The first example  

The model’s initial state vector denoted by 0M
x is given by 

(11). The initial conditions of the model implemented in the 
controller (shown in Fig. 3) are assumed null.              

                        0 1 1 1 1 1 1
M

T
x                        (11)                                         

   The two system outputs y1 and y2 are shown in Fig. 4 and 
Fig. 5. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 The second example 

The initial state vector of the model implemented in the 

controller (denoted by 0 C
x ) is given by (12). The initial 

conditions of the system model are considered null. 

                                   0 1 0 1 1 0 1
C

T
x                      (12) 

The two system outputs y1 and y2 are shown in Fig. 6 and 
Fig. 7. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 The third example  

The two initial state vectors 0M
x and 0 C

x are given by (13).    

  0 1 0 1 1 0 1
M

T
x        0 1 1 1 1 1 1

C

T
x                  (13)                

The two system outputs are shown in Fig. 8 and Fig. 9. 
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Fig. 4. The output y1 of the system. 
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Fig. 5. The output y2 of the system. 
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Fig. 6. The output y1 of the system. 

0 10 20 30 40 50 60
0

0.5

1

1.5

2

2.5

3

3.5

4

Time(s)

ou
tp

ut
 y

1

 
Fig. 8. The output y1 of the system. 
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Fig. 9. The output y2 of the system. 
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Fig. 7. The output y2 of the system. 
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 The fourth example  

The two initial state vectors are given by (14). 

 0 1 0 1 1 0 1
M

T
x              0 1 0 1 1 0 1

C

T
x      (14)                        

The two system outputs are shown in Fig. 10 and Fig. 11. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 The fifth example 

The two initial state vectors are given by (15). 

                 0 0 1 1 1 1 1 1
M C

T
x x                (15) 

The two system outputs are shown in Fig. 12 and Fig. 13. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The simulation results show that the initial conditions affect 
only the transient region of the output signal. The system 
outputs reach the reference signal and the disturbance was 
rapidly rejected despite the disturbance vector which attacks 
the system outputs directly, proving the robustness of the 
proposed control approach. 

V. CONCLUSION 

This paper presents a new approach for IMC of linear 
multivariable underactuated systems. The realized research 
deals with the effect of the initial conditions on the behavior of 
the system. The obtained simulation results prove the accuracy 
and the rapid disturbance rejection capability of the IMC of 
underactuated systems even in the case where the initial 
conditions of the system are taken into account. 
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Fig. 10. The output y1 of the system. 
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Fig. 11. The output y2 of the system. 
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         Fig. 12. The system output y1.                Fig. 13. The system output y2. 
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