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Abstract— This paper is concerned with the robust stability and 
stabilization of systems with bounded parametric uncertainties. 
Robust stability conditions for such systems, referred to as 
interval systems, are derived based on compound matrices. 
Obtained results are then applied for robust stabilization. 
Numerical simulations are performed on an illustrative example 
to show the effectiveness of the proposed approach. 

Index Terms—Uncertain systems, interval uncertainty, robust 
stabilization, additive compound matrix, Lozinskiǐ measure. 

I. INTRODUCTION  
The problems of stability and stabilization of systems with 

bounded parametric uncertainties, often called interval systems, 
are very common in robust control. Since the seminal work of 
Kharitonov [1] about interval polynomials, many results have 
been reported in literature. Several ones are extreme point 
results i.e. the stability of a family of linear interval plants is 
judged depending on a finite number of extreme plants [2, 3, 4, 
5]. Principal adopted approaches are based on Kharitonov-like 
theory [6, 7, 8], interval arithmetic [9, 10,11, 12, 13], structured 
singular value analysis [14] and evolutionary methods [15, 16, 
17, 18]. Most of the reported results are limited to stability 
analysis [19]. Many others, especially those using the 
Kharitonov theorem, are dealing only with systems described 
by transfer functions. In this paper, the robust stability study 
and the stabilization of linear time invariant systems is 
performed based on a compound matrix approach [20, 21, 22]. 
The paper is organized as follows. In section 2, the theoretical 
preliminaries about compound matrices are introduced. The 
proposed method for robust stability study and stabilization is 
exposed in section 3 and illustrated by a simulation example in 
section 4.   

II. PRELIMINARIES AND PROBLEM FORMULATION 

A. Preliminaries and Notation 
Let ( )nM R be the space of n-square matrices with entries 

in R  and let A be a matrix in ( )nM R and k an integer in [1, n]. 
We note by ∧  the exterior product in nR�.  
 
 

Definition 1 [20,21] The additive compound matrix [ ]kA  of A , 
with respect to the canonical basis in the thk exterior product 

space k nΛ R is a linear operator on k nΛ R and can be defined on 
a decomposable element 1 2 ... kv v v∧ ∧ ∧  by: 
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Relations between entries ( ija ) of A and those of [ ]kA  ( ija ) are
 linear. 
Let i be an integer in [1, k

nC ]. If we note by (i) = ( 1,..., ki i ) the 
thi member in the lexicographic ordering of integer k-tuples 

such that 11 ... ki i n≤ < < ≤ , we can obtain the additive 
compound matrix entries from the following result. 
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In particular, we have [1]A A= , [ ] ( )nA trace A=  and for  
A 3 ( )M∈ R , the second additive compound matrix is:  
 

11 22 23 13
[2]

32 11 33 12

31 21 22 33

a a a a
A a a a a

a a a a

+ −⎛ ⎞
⎜ ⎟= +⎜ ⎟
⎜ ⎟− +⎝ ⎠   

           (3) 

 
 
 

Definition 2 [21] Let .  a vector norm on ( )nM R and A a 
matrix in ( )nM R . The Lozinskiǐ measure (logarithmic 

measure) µ of A  with respect to .  is defined by 
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As examples, Lozinskiǐ measure of a matrix A  with respect to 
the three common vector norms  ( 1L , 1L  and 1L ): 

1 ii
x x=∑ , 2

2 ii
x x= ∑  and sup iix x

∞
=  are: 

PC
Typewriter
Proceedings of Engineering & Technology (PET)

PC
Typewriter
ISSN: 2356-5608

PC
Typewriter
pp. 139-143

PC
Typewriter
Copyright IPCO-2016



2nd International Conference on Automation,Control, Engineering and Computer Science (ACECS-2015)  
Proceedings of Engineering & Technology (PET) 
 

     

1
,

2

,

( ) sup( ),

( ) ( ) and
2

( ) sup( ).

jj ij
j i i j

T

ii ij
i j j i

A a a

A AA s

A a a

µ

µ

µ

≠

∞
≠

= +

+
=

= +

∑

∑
                            

(5) 

Where ( )s A denotes the maximum real part of the eigenvalues 
of A . 
Compound matrices represent, as illustrates the following 
result, an interesting formalism for the stability study of matri-
ces.  
A matrix ( )nA M∈ R  is said to be stable (Hurwitz stable) if all
 its eigenvalues have strictly negative real parts. 
 
Theorem 1 [21] if ( 1) det( ) 0n A− >  then A  is stable if and 
only if there exists a Lozinskii measure µ on ( )mM R such that 

[2]( ) 0Aµ < , 2
nm C= .                                 (6) 

 

In this work, the same formalism is adopted in the case of 
interval systems. The following notations and basic interval 
arithmetic operations on R  will be used in the sequel. 

 
 

- The set of uncertain parameters [ , ]a a a∈ will be denoted 
by [ ]a . 

- An interval matrix A  with uncertain entries [ , ]ij ij ija a a∈  
will be symbolized as 1 ,[ ] ([ ]) [ , ]ij i j nA a A A≤ ≤= = .  

- The notation is the same for interval polynomials: 

0
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- For [ ] [ , ]a a a= and [ ] [ , ]b b b= we have 
[ ] [ ] [ , ]
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[ ] [min( , ), max( , )]

a b a b a b
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Using the relations below, we define the determinant  and the 
Lozinskiǐ measure of an interval matrix 1 ,[ ] ([ ])ij i j nA a ≤ ≤=  
as follows: 
det([ ]) [min(det( ), [ , ]),max(det( ), [ , ])]

([ ]) [min( ( ), [ , ]),max( ( ), [ , ])]
A A A A A A A A A

A A A A A A A A Aµ µ µ

= ∈ ∈

= ∈ ∈
(8) 

 

We recall that an interval matrix [ ] [ , ] ( )nA A A M= ⊂ R  is said 
to be stable or “robustly stable” if all the matrices in [ , ]A A  are 
stable. 

 

B. Problem Formulation 
Consider a linear time-invariant (LTI) multivariable 

dynamic system described in the state space by 
 

[ ] [ ]x A x B u= +                                     (9) 

where ( ) nx x t= ∈R  and ( ) ru u t= ∈R are, respectively, the 
state and input vectors. [ ] n nA ×∈R

 

and [ ] n rB ×∈R are  interval 
state matrices. The pair ([ ],[ ])A B is assumed to be controllable 
for any fixed value of the uncertain parameters. 
 

Define a linear state feedback control law as 

                         1.. , 1.., ( )i j i r j nu Kx K k = == − =                        (10) 
The state space model of the closed loop system becomes  

                         [ ] ([ ] [ ] )cx A x A B K x= −                          (11) 
The robust stabilization problem consists on finding a real gain 
matrix that stabilizes the system (11) for all the possible values 
of its uncertain parameters. 

III. PROPOSED STABILIZATION METHOD 
The stability of system (9) is equivalent to the stability of the 
interval matrix [ ]cA . So we focus our study on the stability of 
interval matrices using the compoud matrix method. The 
following result is an immediate generalization of theorem 1.   
 

Theorem 2 Let [ ]A  be an interval matrix on ( )nM R . 
If ( 1) det([ ]) 0n A− >  then [ ]A  is stable if and only if there  
exists a Lozinskiǐ measure µ on ( )mM R such that   

  

                            
[2]([ ] ) 0Aµ < , 2

nm C= .                              (12) 
 

Proof  Define [ ] [ , ]A A A= and 1 [ , ]A A A∈  such that:       
         •  ( 1) det( ) 0n A− > for every [ , ]A A A∈   

  • [2]
1([ ]) max( ( ), [ , ])A A A A Aµ µ= ∈

 

 
if [ ]A  is stable then so is 1A and according to theorem 1, we 
have [2] [2]

1([ ] ) ( ) 0A Aµ µ= < . Reciprocally, if [2]([ ] ) 0Aµ <  
then, for every [ , ]A A A∈ , we have [2] [2]( ) ([ ] ) 0A Aµ µ≤ < . 
This implies, by applying theorem 1, the stability of A  and 
consequently the stability of [ ]A . 

 

A more practical result is proposed in the next corollary 
using the Lozinskiǐ measure associated with the 1L vector norm. 
Other sufficient stability conditions can be derived using 
different Lozinskiǐ measures. 

 

Corollary 1 Let 1 ,[ ] ( )ij i j mA a ≤ ≤=  be the second additive 

compound matrix of [ ]A . If ( 1) det([ ]) 0n A− > then  
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m
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and [ ]A is consequently stable according to theorem 2. 
The stabilization of system (11) can be achieved by applying 
corollary 1 to the matrix[ ]cA .  
A more explicit formulation is presented in the next result 
where the choice of the gain matrix K is conditioned by linear 
interval inequalities. Such inequalities can be transformed by 
minorization and majorization into simple linear inequalities. 
 

Proposition 2  The pair ([ ],[ ])A B  can be stabilized by the 
linear state feedback  1.. , 1.., ( )i j i r j nu Kx K k = == − = , if the 
following 1m +  interval inequalities are satisfied: 

( 1) det([ ] [ ] ) 0n A B K− − >                                             (14) 

1,

( ) [ ( )] 0
m

jj ij
i i j

a K a K
= ≠

+ <∑ , 1..j m= , 2
nm C=              (15) 

where [ ( )] [ ( ), ( )]ij ij ija K a K a K= are the entries of the second 
additive compound matrix of ([ ] [ ] )A B K− . 

IV. NUMERICAL EXAMPLE 
Consider the problem of stabilizing the longitudinal motion 
speed of a helicopter modeled by [23]: 

11 12 11

21 22 22

[ ] [ ] 9.8 [ ] 0
[ ] [ ] 0 0 [ ]

0 1 0 0 0

a a b
X a a X b u

−⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟= +⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠             

(16) 

with 11[ ] [ 0.031, 0.0128]a = − − , 12[ ] [ 3.4, 0.1]a = − − , 

21[ ] [ 0.00077,0.0007]a = − , 22[ ] [ 0.32, 0.31]a = − − , 

11[ ] [ 18, 15]b = − −  and 22[ ] [ 3.3, 3]b = − − . 
Using the same notation in (11) with a state feedback gain 

matrix 11 12 13

21 22 23

k k k
K

k k k
⎛ ⎞
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⎝ ⎠

, the state matrix cA of the closed 

loop system is 
11 11 11 12 12 11 13 11

21 21 22 22 22 22 23 22
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and its second additive compound matrix is given by: 
11 11 11

23 22 13 11
22 22 22

[2]
11 11 11 12 12 11
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Applying proposition 2, a sufficient stability condition of 
system (16) is given by the following inequalities:                                              

c 21 22 11 21 11 13

22 11 22 11 11 23

22 21 21

11 11 11 22 22 22

23 22 11 11 11 21 21 22

13 11 12 12 11 22

det([A ])=(k [b ][b ]-[a ][b ])k
+([b ][a ]-[b ][b ]k )k
+9.8[b ]k -9.8[a ]<0
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[ ] [ ] [ ] [ ] [ ] 0
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According to the system of inequalities above, we can look a 
priori for a state feedback control law involving only entries 

11k , 22k  and 23k  in the gain matrix K , i.e. 12 13 21 0k k k= = = . 
Moreover, given the signs of interval parameters weighted with 
the nonzero entries of the gain matrix, it comes: 

11 22

21

, 0
0

k k
k

<⎧
⎨ >⎩

                                        (20) 

By applying basic interval arithmetic operations on system (19), 
it reduces to 

-2 -2
21

11 22
-3 -3

21

11

11

[-32.34, -29.4]k +[-0.686 10 , 0.7546 10 ] < 0
[-0.351, -0.3228]-[-18, -15]k -[-3.3, -3]k +1 < 0

[-0.77 10 , 0.7 10 ]-[-3.3, -3]k  < [0.031, 0.0128]
+[-18, -15]k

[-0.031, -0.0128]-[-18, -15]k  < [- -3 -3

21

22

0.77 10 , 0.7 10 ]
-[-3.3, -3]k

9.8+[-0.22, 3.09]-[-3.3, -3]k  < 0

⎧
⎪
⎪
⎪
⎪⎪
⎨
⎪
⎪
⎪
⎪
⎪⎩

  (21) 

Sufficient conditions for the above inequalities to be hold are 
obtained using majorization and can easily be solved:     

21

11 22

21 11

11 21

22

-29.4k +0.7546 10-2 < 0
0.6772+15k +3k  < 0
-0.0121+3.3k +15k  < 0
-0.01203+15k -3k  < 0
12.89+3k  < 0

⎧
⎪
⎪⎪
⎨
⎪
⎪
⎪⎩

                              (22) 

Solving the system (22) provides a choice for the nonzero gain 
matrix entries: 

-3
11

-3
21

21 11

22

k  < 0.75020 10

k 0.25666 10
-0.01210+3.3k +15k  < 0
k  < -4.29666

⎧
⎪

>⎪
⎨
⎪
⎪⎩                          

(23) 

One possible choice is { }11 21 22k 0.3, k 2, k 5= − = = − . 
The corresponding interval characteristic polynomial ( )P λ for 
the matrix cA can be deduced using interval arithmetic and is 
given by: 

3 2[ ( )] [19.8228, 22.251] [69.691038, 113.786802]
[58.80686, 64.672454]
P λ λ λ λ= + +
+

   (24) 

The interval polynomial above is Hurwitz stable according to 
the eigenvalues of the four corresponding Kharitonov 
polynomials listed below. 

{-18.69, -1.93, -1.62}
{-14.86, -6.81, -0.58}
{-9.59-3.09 , -9.59+3.09 , -0.63}
{-15.63, -2.61, -1.58}

i i
                   (25) 

The stability of the controlled interval system is confirmed by 
means of numerical simulation. Figure 1 illustrates the 
evolution of the system states for different values of the 
uncertain parameters.  
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V. CONCLUSION 
The compound matrix approach is adopted to derive robust stability 
conditions for interval systems. Obtained conditions are used for 
robust state feedback stabilization. The stabilizing controller 
parameters are solutions of a linear inequality system and only one 
nonlinear inequality. Solving such inequalities can be performed 
easily using symbolic calculation software. The results obtained in 
this paper propose an alternative to those derived using the 
Kharitonov theory for interval linear systems, but can be extended to 
the nonlinear context. Numerical simulations are presented to 
illustrate the application of the proposed approach. 
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Fig. 1.  Evolution of the controlled system states for  different   
values of the uncertain parameters


