Proceedings of Engineering & Technology (PET)
pp. 127-131

Copyright IPCO-2016

2" International Conference on Automation, Control, Engiirepand Computer Science (ACECS-2015)

Proceedings of Engineeri

ng & Technology (PET)

A web-based genetic solver for permutation flowshop using the Deagi
Pattern

Lamia Trabelsi
Ecole Suprieure des Sciences Economiques
et Commercial de Tunis (ESSECT), Tunisie
Email: lamia tr2001@yahoo.fr

Abstract—In this paper, we present a genetic solver tool to
solve permutation flowshop problem. To implement the solves
functionalities, we introduce the use of design patterns sth as the
composite, template and observer patterns to define collalation
between the genetic operators. The proposed genetic solveiill
evaluate several versions of genetic algorithm, and thenjwg the
best version of the selected flowshop variant using the stude
test. Moreover, it allows researchers to download the exetable
code of the best generated version of the genetic algorithmnd
the documentation of the selected flowshop variant.

I. INTRODUCTION

Combinatorial optimization problems under permutation

property (COP-PP) are generally NP-hard. To address such

problems, researchers and practioners grew more attrézted
approximate approaches. Because of the growing interest

such methods, in the last decade, several ready-to-usg tool

Talel Ladhari
College of Business, Umm Al-Qura University,
Umm Al-Qura, Saudi Arabia
Ecole Suprieure des Sciences Economiques
et Commercial de Tunis (ESSECT), Tunisie.
Email: talel ladhari2004@yahoo.fr

A. Operator research structure

Empirically speaking, experimental studies showed that
metaheuristics performance depends on the use of some dif
ferent operators and their behaviour. In fact, effectigsnef
metaheuristics depends on how to use the different availabl
operators. In this section, we address the problem of coléab
tion between metaheuristics and their operators by priegent
an operator structure. In fact, we believe that two issudsema
up the collaboration problem that should be addressed when
developing our genetic solver:

e How to call an operatorin most cases, operators are

invoked into a metaheuristic algorithm under certain
conditions to deal with the diversification/ intensifica-

tion paradigm. This can take place, for example, when
we apply a local search, a crossover in evolutionary
algorithms or a re-construction of metaheuristic mem-
ories.

in

have been proposed in the literature such as HeuristiticLAB

[1], E-OCEA [2], LEKIN [3] and LISA [4]. It is widely admit-
ted that ready-to-use tools in optimization help to imprtwe

quality of searches. However, most of them are not available

like E-OCEA [2]. Moreover, heuristics calibration toolsvea

not been supported by most studied cases. In [5], we have

proposed a new Research Support System for COP-PP. Tré)%

new RSS-COPP provides tools to help young researchers
select a COP-PP variant, to solve the studied problem by
metaheuristic algorithm and to generate the best metattieuri
configuration leading to the best solution using calibratio

e The operator choicein fact, under some conditions,
the selection of one operator from an available list of
operators at run-time may improve the effectiveness

of the designed metaheuristic.

a) The operator structure descriptionOur proposed
erator structure rests on the combination of two patterns
g Template pattern and a Composite pattern [6]. The use of
such patterns is justified by several reasons. In most cases
calling research operators in metaheuristics follows arnom

tools. The Genetic solver is the core of RSS-COPP. In thi@ehaviour as invoked in our research problem statement. If

paper, we propose to enhance the functionalities of thetipene
solver for permutation flowshop by introducing the use of
the design patterns and the generation of the executabke co
of the best configuration. In section I, we present the use
design patterns to deal with collaboration between theraéve
genetic operators. In section lll, we present our new geneti
algorithm solver. Section IV concludes and proposes futur
research avenues.

Il. INTEGRATING THE USE OF DESIGN PATTERNS IN THE

GENETIC SOLVER

We propose to use design patterns to enhance collaboration

@attern.

&

conditions and constraints are satisfied, operators wi- ex
cute their main operation or else they will execute another
Bperation. For this reason, we propose to use the template
In fact, the template pattern is the most suitable
pattern to describe this common skeleton, letting subetass
redefine some operational steps. However, before execaring
perator operation, a metaheuristic is faced with the gmbl

of the choice of the operator to be invoked. To deal with the
operator choice issue, we combine the Template Pattern with
the Composite Pattern for the following reasons:

e The Composite pattern allows operators to be grouped
to achieve the same treatment in a given context

(metaheuristic).

among our genetic solver’s operators’ components. The used e
patterns combine the composite and template patterns to dea
with the operator structure and the observer pattern to deal
with the population’s update phase.

| SSN: 2356-5608

The Composite pattern allows for treating the com-
posite operator (operator list) and the simple operator
uniformly. In this way, the Composite pattern hides
the complexity of the operator’s structure from the

PC
Typewriter
ISSN: 2356-5608

PC
Typewriter
Proceedings of Engineering & Technology (PET)

PC
Typewriter
pp. 127-131

PC
Typewriter
Copyright IPCO-2016

Fig. 1.

Fig. 2.

2" International Conference on Automation, Control, Engiirepand Computer Science (ACECS-2015)
Proceedings of Engineering & Technology (PET)

4@_&27___7 MainOperation(){
SelectionDperator item=Select_ltem()
PO item.MainOperation();

/ |

Compuosite

%Liskﬂ perators

Concrete Operatar

‘MainDperationO ‘Mainﬂperaﬁono
Qadd_ltem() ‘

Fig. 3. PseudoCode of the Composite Maddperation example

b) Consequencestn summary, the proposed operator

VSelect_ltem
%7 =<nterface® = . N .
MainOperation will benefit from all the advantages of the combined patterns

Operater Realizert that we mentioned above. These mainly include:
‘MainDperationO
BT emplataOperationd e Hide complexity: it treats single or composite opera-
X tors uniformly.
1 e Flexibility: Adding new operators or subtracting an

Evaluation Operator

@Eva luate)

existing one is much easier at run-time.

e A Dynamic metaheuristic: The Metaheuristic will se-
lect the most suitable operator for the situation at
run-time thanks to the use of operators list in the
CompositeOperator. In the original Composite pattern,

Generic Operator structure

TemplateOperation(){

if(evaluationOperator.Evaluate()){

this.MainOperation();

}
}

all Leaves (concrete operators) will be executed. This
can be applied when we need all operators to be
executed. For example, to construct a population, we
use a heuristic constructive operator and a random

operator. However, when only one operator must be
invoked, the composite operator will be aggregated to

a selection operator class to select a given operator.

PseudoCode of the Template Method Construct()
B. The observer pattern for the population update phase

metaheuristic. Metaheuristics can use a single operator |n genetic algorithm, the best solution and the num-
or an operator selected from a list by applying aber of generation are the observers of the population class.
selection operator in the same way. Moreover, addingvhen the population is updated, these classes will be no-
a new operator or subtracting an existing one istified about this update and will proceed by updating their
easier and it does not affect the functioning of thevalues. As shown in 4, Population, as a specialized class
metaheuristic. of the subject class, implements the Attach() operation. In

this operation, we will add the observers to the observers

The proposed structure is shown in figure 1. The main particlist. The Bestsolution and IterationNumber classes realiz

ipants are:

the observer interface. By the notify() operation, the popu
. L lation notifies its relative observers about its update.-Sim
Operator: it is an abstract class which |mplement§|ar|y’ we have noted that MaxVith_Out Improvement is
the generic template TemplateOperation() (see pseus, opserver of the best solution class. When the best so-
docode in figure 2). lution is updated, MaxWith_Out Improvement will assess
Main_Operation Interface: it presents the the be_st solution value. If the best value has changed,
Main_Operation method to be implemented in Max_With_Out_Improvement sets its value at zero, other-
concrete operators wise it W|II_ be mcremented._ In this way, the Best So-

lution inherits from the subject class its operation and
ConcreteOperator: the ConcreteOperator is the speMax_With_Out_Improvement will realize the observer inter-
cialization class of Operator. face.

Composite: Composite is a subclass of Operator

and it consists of a list of Operator classes(Leaf). m
If we proceed to select one operator, the compos- '
ite main_operation is implemented by the following The genetic solver has been implemented as a first applica:
steps(figure 3): the composite selects an item accordion for permutation flowshop. More detail about its fouridat

ing to a selectionOperator class. The Selected Itenjs found in [5]. In the next section, we will present the main
will call in its proper mainoperation method (). genetic solver interfaces.

THE GENETIC-SOLVER FOUNDATION

2" International Conference on Automation, Control, Engiirepand Computer Science (ACECS-2015)
Proceedings of Engineering & Technology (PET)

GeneticAlgorithm Population initialization phase I 7T T N L T A T TN
Stop operators forgenetic I 5
sopulztan siza

3 algorithim Sre Lt Sopulztan size
Searchphase | Selecfion Dso
+Terminition criteria

Searchpbase | CrossOver O
Searchphase | Mutation o

m— prate ol ation Dliza
EvaluationOperator Satistical Analysis O oth (50.900] E0

I¥Evaluate()

N pandom construcsion [100 %
Populat
S \ [Cwadified NEH [0 %
® Fivad
Oby %
Max_With_Out_ IterationNumber —
Subject Improvement 2

I®INotify Observer()
®iAttach())
¥ Remove() <<fealize>>

<<realizé>>

Fig. 6. Initialization phase

finding the best result. The best result will be shown in the

O result page (see figure 7) The result interface will provide
Observer
Permutation flowshop proprieties
E®iNotify() Notation F||C max
Under Constramts Processing time dates in min vahe - 1 max value : 100
Download binary code | Download Annoted bibliography |

population size : 50
Construchion population operators

Fig. 4. The proposed observer pattern e SRR gl e
Choice the generation method of Flow shop [Flow Shop Scheduling
instances Job number 20 v Stop criteria operators: * Max number of generation : 0 and 1000
@ Personalized instances Generation machine number 5 v
O Taillard Benchmark for F[|Cmax Number of Instances |10 v Selection operator: Binary Tournament operator
- — Crogsover operators
o Job Chartacteristics I Use Weight1 100 Probabil\ty =075
. Processing time dates - o5 Objective Function
in
® C_max * One-Point Crossover]
[ORelease Dates in 1 .00 na
DL Gj
[Time Lag in 1 .00 OT max Search phase operator Selection operator for crossover Random Selechion operator
[IDelivery dates in i oo OL Tj Mutation operators
[IPrecedence OL_max Probabﬂ.\t‘y =05
Constraints OL}j)
» Exchange perturbation operator

[IDue date

Olndependentfi .. Odependentfi . Selection operator for mutation Random Selection operator
Setup time & None L P P

jm 100 Update phase operator Generational operator
BlockWait: @None ~ _Dlocking ONo

wait

Fig. 7. Example of a result page

View related works
an opportunity to download the different generated fileg (th
Fig. 5. The problem setting interface binary code and the annotated bibliography). Figure 8 shows
the resulting binary code of the best generated configuratio
A. Selection of a permutation flowshop variant and the execution of the file on the researcher side.
It is the first step in our solver. It provides an interface to IV. CONCLUSION AND FUTURE DIRECTION
select a variant for a permutation flowshop scheduling bl '
and to specify its constraints. It allows for the choice of The Genetic Solver tool is a web-based application de-
the generation procedures of the tested problems or irstancyeloped in order to help young researcher to find the best
(figure 5). version of a genetic algorithm for a COP-PP problem. As a
first application to permutation flowshop, the proposed tool
B. Metaheuristic parametrization provides an interface for the selection of a flowshop problem
After the selection of the to-be-solved variant, this step’@ant, an interface to choose the value of genetic parnsiet
allows the researcher to select the to-be-tested metatietsri 20 interface to generate the best genetic version result anc
parameters values. Figure 6 presents the initializatioasgh (e Possibility to download the executable code of the iraat
which allows the user to define the relevant population siz&/€rsion. The operator component is enhanced by combining

and the used operator to construct the population. composite and template patterns. Essentially, the newtste
allowed us to manipulate operators uniformly and to hidérthe
C. Result Generation and code downloading complexity. The Solver should integrate more sophistitate

and more powerful statistical data analysis such as ANOVA
When the different metaheuristic parameters have beef¥] to return the best reliable parameters values of a ssdect
selected, the solver proceeds to the solving process and toetaheuristic. In addition, tools such as fithess landscape

2" International Conference on Automation, Control, Engiirepand Computer Science (ACECS-2015)
Proceedings of Engineering & Technology (PET)

T) rechercher Dassiers | (721

= | 3 c\Dacuments and Settings\Administrateur|BureauiGutput Dowload v B o

~

. ¥ A B ClasslibrarySolvers.di ;
GEstion des ki * i, | o e

= Renommer ce fichier
_g Deéplacer ce fichier m' RestfullassLibrary.dll
3l A - i

+ C:\Documents and Settings\Administrateur\Bureau\OutpuiDowload\Gener

ernutation Flowshop: F &H124;
traints:
val max 10@

16 18 6 13 1% & 3 % 15 @ 4
1275
1 @8 18 5 4 3 6 11 19 14 8
1338
8 12 13 18 16 5 4 14 8 3
1226
12 6 3 2 13 7 1 41 5 16 17

7315'3115191741418
8 2 7 5 @ 18 15 1 9 14

i1 9 15 17 @

/ 3 i1 9 15 17 @

kruth 6 7 g 19 4 14 1@ : i1 9 15 17 @
; 15 17 @8

i i6 12
i i6 12
i i6 12
1 16 12

Fig. 8. Example of an execution of the binary code in the metea side

and robustness analysis will be proposed for the permutatio
flowshop.

REFERENCES

[1] S. Wagner, A. Beham, G. Kronberger, M. Kommenda, E. PRitze
M. Kofler, S. Vonolfen, S. Winkler, V. Dorfer, and M. Affenzet,
“Heuristiclab 3.3: A unified approach to metaheuristic opgation,”
Proceedings of the VII Congreso Espanol sobre Metaheastialgorit-
mos Evolutivos y Bioinspirados (MAEB 2010), Valencia, 8p&010.

[2] V. Tkindt, J.-C. Billaut, J.-L. Bouquard, C. Lente, P. Martine&. Nron,
C. Proust, and C. Tacquard, “The e-ocea project: towardsntamniet
decision system for scheduling problem§k&cision Support Systems
vol. 40, pp. 329-337, 2005.

[3] N. Asadathorn, “Scheduling of assembly type of manufang systems:
Algorithms and systems developments,” Ph.D. dissertaf@partment
of Industrial and Manufacturing Engineering, New Jersegtifate of
Technology, Newark (USA),, 1997.

[4] H. Braesel and N. Shakhlevich, “Lisa—fit for cooperattfevelopment,,”
Sixth Workshop on Models and Algorithms for Planning ande8aling
Problems (MAPSP’03)pp. 107 — 108, 2003.

[5] T. Lamia and L. Talel, “A new web-based solver for combar&l opti-
mization problems under permutation property,Modeling, Simulation
and Applied Optimization ICMSAO13 (28-30 april 2013, Hammeg
2013.

[6] E. Gamma, R. Helm, and R. Johnsdbesign Patterns. Elements of
Reusable Object-Oriented Softwarkst ed. Addison-Wesley Longman,
1995.

[7] D. Montegromy, Design and Analysis of Experimentsth ed. John
Wiley and Sons Inc, 2001.

