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Abstract — In this paper, we are interested in the optimal control 

of discrete-time complex systems. The multi-model approach was 

proposed as a  solution and a powerful tool for the description, 

the  control and the analysis of the studied systems. Minimizing a 

global quadratic performance index, necessary conditions of 

existence of the optimal control gain matrices are proposed and 

an iterative algorithm is presented to compute all the introduced 

results. By the  Lyapunov stability theory, we proved that  these 

optimal gains ensure the asymptotic stability of the controlled 

system. To demonstrate the effectiveness of the proposed strategy 

simulation results are given. 

 

Keywords—optimal control; output feedback control; nonlinear 

systems; discrete-time systems 

I. INTRODUCTION 

 The  control of nonlinear systems have been the subject of 

numerous research papers [1-4,7,10-14,20]. However, the 

static and dynamic output feedback control of discrete-time 

nonlinear systems has received little attention. When the state 

vector of the considered system is not completely available for 

feedback, output feedback solutions can be considered. The 

static output feedback problem is known to be a challenging 

issue due to its non-convex nature and many attempts have 

been made to solve the linear case problem [5-16]. The 

nonlinear case continue to attract the attention of  many 

researchers [15-18].  

 

 In practice an accurate model of the studied plant can't be 

usually available, might change and can have different 

operating points. To overcome these difficulties, the multi-

model approach [9-13] was proposed in the literature as a  

solution and a powerful tool for the description, the  control 

and the analysis of the studied systems. Therefore, motivated 

by this result,  we investigate the  optimal control problem for 

nonlinear uncertain systems described by a discrete-time 

multi-model representation. The optimization problem was 

reduced to the minimization of a global quadratic performance 

index having a direct signification and interpretation regarding 

to the convergence and the control law of the controlled 

system. Necessary conditions of existence of the optimal 

control gain matrices are proposed.  

 The rest of the paper is organized as follows: In Section II, 

the description of the studied systems and problem 

formulation is given. Section III gives the main results of this 

work. In section IV, an example is given to illustrate the 

proposed method. Section V contains the conclusions and final 

remarks. 

II. PROBLEM STATEMENTS 

Consider in this study a class of nonlinear and uncertain 

discrete-time system  described by: 
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where ( )
n

x k 
  

is the state vector, ( )
m

u k  is the input 

vector and ( )
p

y k   is the output vector. The functions f (.) 

and h(.) depend on a vector of parameters θ(k) which is 

considered unknown, but evolving in a convex domain ID . 

 

 In the literature, various approaches [13] like 

identification, linearization or convex polytopic transformation 

can be used to determine the multimodel description of a 

complex system.  

 

 In this paper, we assume that the nonlinear mathematical 

model of the studied system is known . By linearization 

around its several operating points , 1...0 0( , ) i Ni iu x  , different 

and simpler local models are obtained. So the  complex 

studied system described initially by a nonlinear mathematical 

model (1) can be then described by a library of N local linear 

model  characterized by the following state space equations: 
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where N is the number of local models, ( )x ki
n

 ,       
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( )y ki  
p

  and ( )u ki  are respectively the state vector, the 

output vector and the control input vector of the i-th submodel 

noted Mi . 

The state space matrices , ,i i iA B C  are constant of appropriate 

dimensions to be determined. 
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and let's note: 
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Each model of the library, involving N  sub-models, 

contributes to the process description with a degree of trust 

measured by a validity coefficient. The validity appears to be 

of great importance if realizing their influence on the 

performances of the global control law [9,13]. 

 

 Indeed, the use of the validity coefficients is a convenient 

mean  to experiment with sub-collection of systems and is also 

useful to put more emphasis on the performances of some 

particular instances of parameter values. In the literature 

several methods were proposed for the estimation of these 

validities. In this paper the residue approach [13] is considered 

for validities computing. 

 

III. OPTIMAL OUTPUT FEEDBACK CONTROL FOR DISCRETE-TIME 

NONLINEAR SYSTEM 

 In this section, our objective is to design an output 

feedback controller for the studied system and a cost function 

such that the resulting closed-loop system is asymptotically 

stable and the closed loop cost function is minimized. 

Assume for each isolated subsystem Mi , a local controller is 

designed.  

 
( ) ( )i i iu k F y k                                   (5) 

where 
m p

Fi


  is the control gain matrix to be 

determined by minimizing the proposed  quadratic function: 
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where 0
n n

i

T

iQ Q


   and 0 
T m m

i iR R


    are the 

state and input weighting matrices. 

    
 

Applying controller (5) to the system (2) results in the closed-

loop system: 

            ( 1) ( ) ( )i i i i i ix k A B FC x k  
                                  

(7) 

The performance index associated with the studied system (1) 

is then the following quadratic function: 
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where i , 1, ,i N  are the validity
 

coefficients of the 

proposed multimodel description 

 

 Using the solution of the recurrent equation (7), one can 

write: 
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K

i i i i i ix k A B FC x                               (9) 

and substituting (9) in (8), the global  performance index (8) 

can be rewritten : 
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and presented in a simplified expression : 

           
0 0

0

N
T

i i i i
i

J x Px


                                                       (11) 

where 

   
0

( ) ( )K T T K
i i i i i i i i i i i i i ii

k

T
A B FC Q C F R FC A B FCP







 
   
 
 

  

are symmetric positive definite matrices, solutions of the 

following Lyapunov equations: 
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The dependency of the optimal solution on the initial 

condition  can be removed  when considering the average 

value function (.)E
 
such that: 
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Based on equation  (13),  the corresponding closed-loop cost 

function will be written as follows : 
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A- Main results 

 

In order to derive the necessary conditions of  optimal gain 

matrices of the feedback control, the optimization problem 

formulated by (11) is reduced to the minimization of  the 

following Lagrangian: 
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where , 0, 1,...,n n T

i i i i N        selected to be 

symmetric positive definite matrices are Lagrange multipliers. 

 

By using the gradient matrix operations [8], the necessary 

conditions for Fi , Pi  and i , to be optimal are given by 
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solving the first equation in (16), one obtains the optimal 

control gain matrix Fi  of the local model Mi : 
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and from the two others equations we can determine the 

matrices i  and  all the matrices Pi  solutions of the Lyapunov 

equations (12). Indeed, based on (16), i  
and Pi  are also the 

solutions of the following equations: 
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To solve instantly the three equations (17), (18) and (19), and 

to calculate all the introduced matrices ,  i iF P  and  i , we 

propose an iterative algorithm which can be summarized in the 

following way: 

 

Algorithm  

 

 

Step1 : Initialize 1n    

Select 0, 0Q Ri i 
 

and an initial matrix 0iF
  

u as 

initial starting value such that 0i i i iA B F C  is a stable for 

each local model. 

 

Step 2 :  n
th

 iteration 

 calculate 
inF

 
 (17)

 
 

 solve  2 , 0in inG F P    and  calculate in . 

 solve  3 , 0in inG F P   ; and get the matrix inP . 

 calculate 
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1 1

( 1)
T T T T
i in i i i in i in i i in ii n B P B R B P A C C CF

 
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Step 3 :  incrementation  

   repeat step 2 until verifying   1in i n
P P 


 

 

End 

  is a prescribed small number used to check the 

convergence of the algorithm 

 

B- The optimal controller design 

 

Given  the predetermined  matrices iF   the system (1) can be 

controlled in an optimal manner by the following control 

policy  ( )u k  which guarantees the minimization of the infinite 

horizon cost function (8). 
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then the closed-loop system (1)  admits the realization: 
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C - Stability analysis 

In order to prove the asymptotic stability of the controlled 

system, let's consider  ( ( ))iV x k  the Lyapunov function 

defined by the following quadratic form: 

                       
( ( )) ( ) ( )T

i i i iV x k x k Px k
                                     (22) 

where
n n

iP


  are the symmetric positive definite matrices 

solution of the equation (12) and (16).  

 

The stability of the controlled system (22) is ensured if the 

difference of  Lyapunov function (18) along the trajectory of 

(7) is  negative definite. 

 

One has: 
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Using the third equation of system (16), (19) becomes: 

  ( ) ( )
T T T

V k x k Q C F R F C x ki i i i i i i    
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                  (24) 

According to the properties of matrices Qi  and Ri , the matrix 

T T
Q C F RF Ci i i i  is symmetric positive definite. The 

variation of the quadratic Lyapunov function, expressed by 

(24), is then negative defined and the controlled system is then 

asymptotically stable. 

 

IV. NUMERICAL EXAMPLE 

Let's consider the mechanical system described by a spring 

damper mass M [25] as follows: 
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1 2 3( ) ( ) ( ) 1 ( ) ( )Mx t c x t c x t c x ut t                     (25) 

where: 

 1M Kg  is the mass of the system, 

 1 1c  , 2 1.155c   and 3 0.13c   are constants, 

 ( )u t  is the exerted force for the spring, 

 
3( )x t  is the nonlinear term.  

and rewritten in the following state space equations: 
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where 1( )x t  is the velocity of the mass and
 

2 ( )x t  the posit 

ion of the same mass. 

  

By using an appropriate discretization method and a suitable 

sampling period 0.05T s , it comes the discrete-time state 

space equations: 
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we pointed out that the nonlinearity of the system is 

considered as uncertainty and the term of linearities depend on 

 1( )x k  which is assumed to vary in the range  1.5 1.5 . 

According to section III, and based on the multimodel 

approach  the nonlinear dynamical system (26) can be 

described by: 
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The validity coefficients of this system are expressed as 

follows: 

3
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1
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1
0.5

1 6.75

x k
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( ( )) ( ( ))
2 1 1 1

1x k x k  
 

 

 

Using the proposed iterative algorithm the following results 

are derived: 

 
 The quadratic criterion: 

J = 0.7727 ,1
J = 0.97082  

 The symmetric positive definite matrices: 

 ,
0.1412 0.1148

P =
1 0.1148 0.6315

 
  

0.2735 0.1806
P =
2 0.1806 0.6973

 
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 The symmetric positive definite matrices of Lagrange 

multipliers: 

 ,
5.9552 -5.2978

Γ =
1 -5.2978 7.0525

 
  

6.9638 -5.3482
Γ =

2 -5.3482 9.8512

 
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and all the gain matrices of the proposed optimal control are 

calculated: 

 

  ,F = -1.0621 1.7891  
1  F = -0.3236 1.4268

2
 

To show the effectiveness of the proposed optimal output 

feedback control we have carried out some simulations shown 

from figure 1 to 3. It appears a satisfactory stabilization of  the 

state variables of the controlled discrete-time studied system 

(figures 1 to 2). The figure 3 illustrates the evolution of  the 

proposed optimal output feedback control  law. Indeed, its 

high performances shows the aptitude of  the proposed  



Algorithm to be implemented and to give  interesting  results 

for the output feedback control of a large class of nonlinear 

discrete-time systems.  

V. CONCLUSION 

The nonlinear discrete-time studied system is first represented 

by a multi local linear models. Then, an output feedback 

controller based on the multimodel control approach and 

minimizing a quadratic criterion is derived assuring the 

asymptotic stability of the controlled system. An illustrative 

example is considered and the simulation results show the 

effectiveness of the proposed control strategy. 
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Figure 1: Evolution of the state vector of the system provided with the optimal 
proposed control law  
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Figure 2: Evolution of the optimal multimodel control law  
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