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Abstract— This paper proposes a power system partitioning 

technique based on a nonlinear Koopman modal decomposition. 

A partitioning algorithm is developed to determine the exact 

separation points in a controlled islanding strategy. Koopman 

spectral analysis of data on bus voltage angles dynamics is 

performed to identify coherent buses and precisely select the 

cutsets. The study is conducted on the Kundur two area four 

machines test power system. A comparison in terms of cutsets 

identification is made with the conventional slow coherency 

methods previously applied for power grid partitioning. The 

results reveal that the proposed partitioning scheme captures 

intrinsic structural properties of a power system and may identify 

nonlinear properties that cannot be evaluated with standard 

linear modal decomposition techniques.    
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I. INTRODUCTION 

Because of growing demand on electricity supply, with an 

economic optimization need and increasing limitations, power 

systems operate closer to their reliability and stability limits. 
They are more vulnerable to contingencies and severe 

disturbances that may cause cascading failures leading to 

blackouts [1]-[3]. Power system controlled islanding scheme is 

an efficient corrective measure to limit system blackouts after 

the occurrence of a large disturbance [4]-[8]. It prevents 

cascading outages from propagating further throughout the 

power system by splitting the electrical network into a group of 

isolated smaller power systems called islands. It is well 

recognized that a key part of controlled islanding scheme is the 

most critical and important problem of partitioning, in others 

words, to decide where to exactly separate a power grid.  

Many researchers have outlined different partitioning 

techniques. In [10]-[12], the authors propose a power grid 

separation scheme based on the use of the slow coherency 

method to identify clusters of coherent generators groups, 

boundaries of which provide the desirable locations of 

separation. Relevant cutsets are defined by the weakest links 

connecting the identified coherent generators. The standard 

slow coherency method is extended in [9] to include load buses 

to provide directly the power grid partitioning. The slow 

coherency approach is based on a linearized electromechanical 

power system model around an operating point. In [13] [15], a 

new system splitting method based on an ordered binary 

decision diagram is proposed. It is a typical analytical 

algorithm of splitting locations searches based on power system 

characteristics and the graph theory. In [14] [16], the authors 

propose a power network partitioning technique based on 

electrical distances that relates power grid topology to active 

power sensitivities. The incremental change in voltage phase 
angles that result from an incremental increasing in active 

power transmission from bus to bus is estimated. Zones are 

defined as strongly connected buses collections. Cutsets are 

defined as weakly connected buses between zones. The 

electrical distance measure is based on information contained in 

the system admittance matrix.  

Most of the existing partitioning strategies are based on 

graph theoretical methodology and system model linearization. 

To provide accurate results, they require potentially substantial 

amounts of detailed electrical network parameters. Because of 

the difficulties of having all detailed system data, they are 

constrained by modeling simplifications. Nonlinearities are 

ignored from the analysis of linearized equations around 

equilibrium. In this paper, the power grids partitioning problem 

is performed by utilizing the nonlinear Koopman Modes 

Analysis (KMA) [18] [21] [25]. This analysis does not rely on 

system modeling, models simplifications and linearization. It 
only relies on nonlinear dynamics data in the power system 

following a disturbance. Computing nonlinear Koopman modes 

from observation data has been developed in [20] and recently 

applied to power systems analysis and performance assessment 

[21]-[25]. The KMA is a nonlinear modal decomposition 

technique based on the Koopman operator spectrum which 

provides a linear infinite-dimensional description of dynamics 

nonlinear evolution [17]-[19]. Each Koopman mode oscillates 

by definition with a single frequency. Thus, it is relevant for 

capturing spatio-temporal pattern of large scale power system 

dynamics.   
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In this paper, an algorithm for partitioning power systems 

is proposed based on applying the nonlinear Koopman modes 

analysis on sampled dynamics of buses voltage angles. The 

notion of Koopman modes dynamics coherency is used for 

identifying the partitions of a target electric power network. 

Coherent buses groups are identified by focusing on their 

angles coherency. Relevant cutsets are derived. The study is 

conducted on Kundur two area four machines test power 

system. A comparison in terms of cutsets identification is 

made with the conventional slow coherency method previously 

applied to power grid partitioning problem. Results are 

presented and discussed. Conclusions are provided. 

II. THE KOOPMAN MODES ANALYSIS  

A. Koopman Modes Theory  

The Koopman modes analysis is a mathematical technique 

of dynamics modal decomposition based on the spectral 

analysis of the Koopman operator [18] [20]. This analysis does 

not rely on system modeling, models simplifications and 

linearization. It only relies on nonlinear dynamics data. The 

Koopman operator is defined for arbitrary dynamical systems. 
It is a linear operator able to capture nonlinear phenomena 

[19]. Recently, the Koopman spectral analysis is used for 

power systems applications [21]-[25].  

In the following, the development is based on [20]. A discrete 

time system evolution on a smooth manifold M is considered 

as:   

                                                                                   (1) 

where f is a nonlinear time invariant map from M to itself.  

Let consider from (1) a scalar observable        .The 
observable is defined as a mathematical measurements model 

of the power system dynamics. The Koopman operator U is 

applied on the observable. It maps   to a novel function U   

as:                        

                                                                 (2)                                                                

where the observable   is composed with . The Koopman 

operator is linear. As a result, it is natural to execute the 

spectral analysis. The Koopman eigenvalues      and the 

Koopman eigenfunctions          are defined as:   

                                                                          (3) 
Let consider a vector valued observable: 

                                         
 
            (4)                                       

If all components of the observable g lie within the span of the 

eigenfunctions    ,      can be expanded in terms of the 

Koopman eigenfunctions as follow:     

                                          
 
                                   (5)                                         

where         are vector valued coefficients of the 
decomposition called Koopman modes which depend on the 

observable choice. Thus, the time evolution of the observable 

      at a certain time    from       at time 0 is expanded as 

follows:     

                      
 
               

    
 
                  (6)                            

This demonstrates that the nonlinear evolution in power 

system dynamics is characterized by the Koopman operator 

spectrum. The analysis based on (6) defines the Koopman 

Modes Analysis. 

B. Koopman Modes Analysis Algorithm 

It is shown in [20] that the Arnoldi-type algorithm 

produces decomposition for a finite series of a same type as 

(6). Thus, Koopman modes may be numerically approximated 

as described in [20] by an Arnoldi algorithm. It is shown that 

Ritz values   
  approximate Koopman eigenvalues    and Ritz 

vectors      approximate factors           in (6) which refer to 

Koopman modes. Let’s consider                 } as (N+1) 

vectors of data where the vector       is a vector measuring 
the observables at a discrete time k. The finite series 

approximation of (6) is presented as follow:    

                    
         

   
                

         
  

 
        

               (7)                                

where      is a residue that represent a small 

approximation error, defined as: 

                                            
   
                           (8)                                             

The choice of constants    must satisfy:  

                                                   }                    (9)                            

With c = [           ] and M = [                 ],        
(8) together with (9) gives:  

                                               (10)                             

Where:          and                        

Therefore, the constants vector c is given by:    

                                                                   (11)                                         

With    is the Moore-Penrose pseudoinverse of A defined as a 

generalized inverse of any non-square matrix.   

The Ritz values   
  , i.e., an approximation of Koopman 

eigenvalues, are defined as the eigenvalues of the companion 

matrix   given by: 

                               

 
 
 
 
 

              

              

                  

                        
                   

 
 
 
 

                           (12)                                        

The Ritz vectors     which refer to Koopman modes are defined 
as the columns of:  

                                                
                     (13)                                  

Where the matrix T called the Vandermonde matrix is defined 

as follow: 

                           

 
 
 
 
 
       

      
         

    

      
       

  
       

    

      
      

  
       

    

                             

           
       

  
     

    
 
 
 
 
 
 

                   (14)                               

 Each Koopman eigenvalue characterizes the temporal 

behavior of corresponding Koopman mode. The phase of the 

eigenvalue determines the mode frequency and its magnitude 

determines the mode growth rate. Koopman modes 

frequencies     are defined as [21]-[26]:   



                                        
                                 (15)                                                              

With:     is the sampling frequency of dynamics data and 

     
  called the Koopman modes arguments are defined as:  

                                   
           

                             (16)                                         

The Koopman modes growth rates     are defined as complex 

modulus of Koopman eigenvalues given by: 

                                            
                                     (17)                                                   

The growth rates evaluate the sampled dynamics damping. 

Large growth rate indicates small damping ratio. A growth rate 

equal or larger than unity defines a non-oscillatory power 
system dynamic. But a growth rate smaller than unity defines a 

positively damped oscillatory mode [20]-[25].  

The contribution magnitude of a given Koopman mode in the 

dynamics data is quantified by its norm. The Koopman modes 

norms noted       are defined as [21]-[25]:   

                                                
                                    (18)                                      

The algorithm1 provides the Koopman modes analysis of 

dynamics data. The input of this algorithm is the observables 

sampled data matrix (such as: buses voltage angles), the 
sampling frequency of data and the desired number of 

Koopman modes to be computed. The outputs of this 

algorithm are: the Koopman eigenvalues, the Koopman modes 

and their norms, frequencies and Growth rates. 

 

Algorithm 1: Koopman Modes Analysis  
 

Requires: observables dynamics data; sampling frequency; 

number of Koopman modes to be computed   

Ensure: KMA    

1: Computation of the companion matrix C 

2: Koopman eigenvalues    
         eigenvalues of C 

3: Computation of the matrix V of Ritz eigenvectors    

4: Koopman modes              columns of V 

5: Computation of Koopman modes norms               
6: Computation of Koopman modes frequencies          
7: Computation of Koopman modes growth rates             
  

C. Coherency in Koopman Modes 

The Coherency identification from the observables data via 

Koopman modes analysis was first proposed in [23] and 

theoretically was refined in [18]. For a derived Koopman 

mode     , called Koopman Mode i, with               

where    ,           and m: is the observables number, 

    is called the amplitude coefficients of modal dynamics and 

    stands for the initial phases of modal dynamics, defined as 

follow for each mode i and observable j (such as generator 

rotor speed   or bus voltage angle   ) [21]-[23]:   

                         
                 

          (19) 

 

                                                       (20)          

Where: the notation               determines the j-th 

component of the vector               and the notation 

              determines the j-th component of the 

vector              .  
To identify for a particular Mode i coherent dynamics in 

phase and frequency, it is mainly sufficient to check both 

amplitudes coefficients     and initial phases     .  A set of 

scalar observables          is defined as coherent group 

with respect to a given Koopman mode i, if all     have  

similar amplitudes coefficients and initial phases [21]-[23]. 

D. Proposed KMA Based Partitioning Algorithm  

The proposed method demonstrated in this paper of 

partitioning power systems based on Koopman modes analysis 

is outlined as follow. The KMA is performed based on voltage 

angles dynamics of buses following a disturbance. Splitting 

the power system with respect to coherent buses groups is 

expected to form partitions with coherent generators able to 

keep synchronism. Thus, power grid partitions are derived 
based on coherent buses determined in terms of dominant 

Koopman modes. Cutsets are identified for each partition as a 

set of transmission lines connecting different coherent groups. 

The pseudocode of this proposed method is provided in 

Algorithm2. 

 

Algorithm 2: KMA Based Partitioning   
 

Requires:             data set of buses voltage angles 

dynamics; G: power transmission grid  

Ensure: Cutsets     

1:     
            KoopmanModesAnalysis (                

2:       DominantKoopmanModes            

3:             AmplitudesCoefficientsVectors (     )   

4:             InitialPhasesVectors (     )    

5:            IdentifyCoherency (            )    

6: IdentifyCutsets (   , G)       
 

 

The different steps of the proposed algorithm to identify 

cutsets are outlined in the following:     

1) Consider the set of buses voltage angles dynamics acquired 

under uniform sampling:            By applying the 

KMA algorithm to this finite time data set, N pair    
       

with     of Koopman eigenvalues and Koopman modes 

are obtained (Koopman Modes Analysis).   

2) Select the Koopman modes with the largest growth rates 

and norms to represent the dynamic information in the 

study set of data. These are the dominant Koopman modes 

identified as the set      (DominantKoopmanModes). 

3) For each dominant Koopman mode i, the amplitudes 

coefficients vector    is calculated 

(AmplitudesCoefficientsVectors).    

4) For each dominant Koopman mode i, the initial phases 

vector    is computed (InitialPhasesVectors).  

5) For every pair         of each dominant Koopman mode i, 

a grouping matrix                     is identified 



containing the coherent groups, where NCG is the number 

of coherent groups (IdentifyCoherency). 

6) With identified coherent groups    , the cutsets are simply 
determined by finding in the power transmission grid, the 

transmission lines connecting the buses of different groups 

(IdentifyCutsets). 

III. STUDY CASE 

The proposed KMA based partitioning algorithm is applied 
to sampled data on bus voltage angles dynamics following a 

short-circuit disturbance in study Kundur two area four 

machines power system [26]. The study sampling frequency is 

80Hz. Simulations are executed by means of an open-source 

electric power network analysis toolbox of MATLAB named 

PSAT [27].  

The test system is depicted in Fig. 1, consisting of four 

synchronous equivalent generators. In each test power system 

area, there are two generation units, a load and a capacitor. The 

active power capacity of load is: 967 MW in area 1 and 1767 

MW in area 2. The reactive power capacity of load is: -100MW 

in area 1 and -250 MW in area 2. Each generation capacity is 
700 MW. Totally, 2800 MW of power generation are installed 

in the Kundur two areas four machines test power system.  

From area one to area two, 400 MW is exported. All generators 

are equipped with automatic regulators excluding generator G4 

of area two.      

The studied three-phase fault is applied at time t=1s in area 

1at bus 1of Kundur test system. The short circuit is cleared 

after duration of 150ms. The oscillatory response results of bus 

voltage angles under this tested fault are shown in Fig. 2, Fig. 3 

and Fig. 4. We note that voltage angles of buses 2, 5 and 6 of 

area 1 swing together in phase and frequency. However, 
voltage angles of buses 1 and 7 demonstrate different dynamics 

compared to those of buses 2, 5 and 6 in area1.Voltage angles 

of buses 3, 4, 9, 10 and 11 of area 2, show another coherent 

dynamics excited by the study applied disturbance. Voltage 

angle of bus 8, which is the interconnection bus between the 

two areas, shows a different dynamic motion compared to those 

of area 1 buses and area 2 buses.       

The cutsets identification for partitioning power system is 

compared for both techniques: the proposed KMA based 

partitioning and the conventional slow coherency method 

previously applied to power grid partitioning problem.  

 

 
Fig. 1. Tested Tested two area four machines power system [26] 

 

 

 

Fig. 2. Voltage angles dynamics of area1 buses under the tested fault for two 

area four machines test power system      

 

Fig. 3. Voltage angles dynamics of area2 buses under the tested fault for two 

area four machines test power system      

 

Fig. 4. Voltage angle dynamic of bus 8 under the tested fault for two area 

four machines test power system          

IV. PARTITIONING RESULTS 

By means of applying the KMA algorithm on buses 

voltage angles data, the Koopman modes are identified. The 

three most dominant oscillatory Koopman modes with largest 

growth rates and norms are listed in Table I. Based on buses 

coherency of this dominant modes, partitions for the test 

power system are derived. This identification of coherent 

buses groups is performed by utilizing the K-means clustering 

technique. 



TABLE I.   
OBTAINED DOMINANT KOOPMAN MODES FOR VOLTAGE ANGLE DYNAMICS 

DATA SHOWN IN FIG.2,FIG.3 AND FIG.4 

Mode Number Mode Frequency (Hz) 

1 0.1 

2 0.044 

3 0.14 

 
The initial phases     versus the amplitudes     are plotted 

for every bus j = 1,…,11 and for every dominant Koopman 

mode i= 1,…,3.  The phase versus amplitude plot of buses 

voltage angles for Mode 1 of frequency 0.1 Hz is depicted in 

Fig. 5.  Grouping of coherent buses with respect to this Mode 

as illustrated in Fig. 5 leads to five buses groups. One group 

corresponds to the buses of area 2. The interconnection bus 8 

forms another group. The buses of area 1 are divided into 3 

sub-groups: the bus 1 where the disturbance is applied forms 

one group, the bus 7 forms another group and the rest of area 1 
buses (2, 5 and 6) have different phases and amplitudes 

compared to those of bus 1 and 7. Thus, they form another 

group. The phase versus amplitude plot of buses voltage angles 

for Mode 2 of frequency 0.044 Hz is depicted in Fig. 6. Based 

on this mode, grouping of coherent buses as shown in Fig. 6 

leads to the same five buses groups based on Mode 1. The 

phase versus amplitude plot of buses voltage angles for Mode 3 

of frequency 0.14 Hz is illustrated in Fig. 7. The grouping 

results of coherent buses based on this mode lead to the same 

five buses groups based on Mode 1 and Mode 2. The power 

system partitioning is constructed by considering all grouping 

results of coherent buses based on different dominant Koopman 

modes. Power system cutsets are defined by the combination of 

cutsets according to each dominant Koopman mode. By 

combining the resulting partitions for Mode 1, Mode 2 and 

Mode 3, a partition with four disjoint parts of the Kundur two 

areas four machines test power system is obtained. This 
partition is given in Fig. 8.           

Based on the slow coherency method, a partition with two 

disjoint parts area 1and area 2 for the studied two areas four 

machines power system is defined as shown in Fig. 8. The 

buses of area 1 form one group and those of area 2 form 

another group. Slow coherency is defined by the fact that states 

in the same area are coherent with a respect to the slowest 

modes which are poorly damped modes with low frequencies. 

This method is based on the selection of the interarea modes 

through linear modal analysis of simplified power system 

model to identify weakly connected coherent groups [9]-[12].    

The comparison between cutsets identification of the two 
partitioning methods reveals that: the KMA based partitioning 

pattern is different with the slow coherency partitioning 

pattern. This difference is mainly the effect of nonlinearity 

neglect in the linearized modal analysis. The proposed 

partitioning scheme based on nonlinear Koopman modes 

captures intrinsic structural properties of a power system by 

identifying weakly connected coherent groups and may 

identify nonlinear properties that cannot be evaluated with 

standard linear modal decomposition.   

 
Fig. 5. Phase versus amplitude plot of buses voltage angles for Mode 1 of 

frequency 0.1 Hz  

 

Fig. 6. Phase versus amplitude plot of buses voltage angles for Mode 2 of 

frequency 0.044 Hz 

 

Fig. 7. Phase versus amplitude plot of buses voltage angles for Mode 3 of 

frequency 0.14 Hz  

 

Fig. 8. Partitioning of the Kundur test power system according to Mode 1, 

Mode 2, Mode 3 and Linear Cutset. The cutsets are indicated by colored lines.  



V. CONCLUSION  

This paper proposes an algorithm for partitioning power 

systems based on applying the nonlinear modal decomposition 

technique named Koopman modes analysis on sampled 

dynamics of buses voltage angles. This proposed algorithm 

determines exactly the separation points in a controlled 

islanding strategy. The notion of dominant Koopman modes 

dynamics coherency is used for identifying the partitions of a 

target electrical network. Dominant Koopman modes 

correspond to predominant frequencies identified in the 

dynamics of power system following a disturbance. Coherent 
buses groups are derived by focusing on their angles 

coherency to precisely select the cutsets. The identification of 

coherent buses groups is performed by utilizing the K-means 

clustering technique. The study is conducted on Kundur two 

area four machines test power system. A comparison in terms 

of cutsets identification is made with the conventional slow 

coherency method previously applied to power grid 

partitioning problem. This method is based on the selection of 

the interarea modes through linear modal analysis of 

simplified power system model to identify weakly connected 

coherent groups. The results reveal that the KMA based 

partitioning pattern is different with the slow coherency 

partitioning pattern. This difference is mainly the effect of 

nonlinearity neglect in the linearized modal analysis. The 

proposed partitioning scheme based on nonlinear Koopman 

modes captures intrinsic structural properties of a power 

system by identifying weakly connected coherent groups 
determined by the slow coherency based partitioning method 

and may identify nonlinear properties that cannot be evaluated 

with standard linear modal decomposition.  
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