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Abstract— This paper presents the application of the 

second law analysis of thermodynamics to viscoelastic 

magneto hydrodynamic flow over a stretching surface 

where the heat process is considered namely prescribed 

wall heat flux.  The velocity and temperature profiles are 

obtained by the analytical solution of highly nonlinear 

momentum equation and confluent hyper geometric 

Kummer's functions and used to compute the entropy 

generation number. The effects of the viscoelastic and 

magnetic parameter, the Prandtl number, the heat 

source/heat sink parameter on velocity and temperature 

profiles are presented. The influence of the same 

parameters, the Hartmann number, the dimensionless 

group parameter and the Reynolds number on the entropy 

generation are also discussed.  

                                                                                                                   

Keywords—    Entropy analysis, Magneto-hydrodynamic, 

Stretching surface, Viscoelastic fluid . 

I. INTRODUCTION 

This The studies of non- Newtonian fluids generation entropy 

have received much attention because the power needed in 

stretching a sheet and heat transfer rate in non-newtonian 

from those of newtonian fluid. The study of MHD flow of 

viscoelastic fluid over a continuously moving surface has 

wide range of applications in technological and 

manufacturing processes in industries. This concerns the 

production of synthetic sheets, aerodynamic extrusion of 

plastic sheets, cooling of metallic plates, etc.  

.Chang[1]and Rajagopal et al. [2]  presented an analysis 

on flow of viscoelastic fluid over   stretching  sheet.   Heat   

transfer  cases   of  these   studies  have   been   considered  

by Dandapat & Gupta, [3] and Vajravelu & Rollins[4], while  

flow of viscoelastic fluid  over  a stretching surface  under the  

influence of uniform magnetic field  has  been  investigated 

by Andersson [5]. The effects of a transverse magnetic field 

and  electric  field on momentum and  heat  transfer 

characteristics  in  viscoelastic  fluid   over   a  stretching  

sheet   taking into  account  viscous dissipation and  ohmic  

dissipation is presented by Abel  et al. [6]. 

 The effects of non-uniform heat source,  viscous  

dissipation and thermal radiation on  the  flow  and  heat  

transfer in  a  viscoelastic fluid  over  a  stretching surface  

was considered in Prasad et al.[7]. Subhas et al. [8] analyzed 

the momentum and  heat  transfer characteristics in a 

hydromagnetic flow  of viscoelastic liquid over  a stretching 

sheet  with  non-uniform heat source.  . Chen [9] studied the 

magneto-hydrodynamic flow and  heat  transfer 

characteristics viscoelastic fluid  past  a stretching surface,  

taking into  account the  effects of Joule  and   viscous   

dissipation,  internal  heat   generation/absorption,  work   

done   due   to deformation  and   thermal  radiation. Although 

the forgoing research works  have covered a wide  range  of 

problems involving the flow and  heat  transfer of viscoelastic 

fluid  over stretching surface  they have  been restricted, from  

thermodynamic point  of view,  to only  the first law  analysis.  

The contemporary trend in the field of heat transfer and   

thermal design is the second law of thermodynamics analysis 

and its related concept of entropy generation minimization. 

Entropy generation is closely associated with   

thermodynamic irreversibility, which   is encountered in all 

heat transfer processes.  

Different sources are responsible for generation of entropy 

such  as   heat  transfer and  viscous  dissipation Bejan [10.11] 

The  analysis of entropy     generation rate  in  a  circular duct   

with   imposed heat  flux  at  the  wall  and   its extension to 

determine the  optimum Reynolds number as function of the  

Prandtl number and  the duty  

parameter were  presented by Bejan [12]  Mahmud & Fraser 

[13.14.15]  applied the second  law   analysis  to   

fundamental   convective  heat   transfer  problems  and   to   

non- Newtonian fluid  flow  through channel made  of two  

parallel plates.  The study of entropy generation in a falling 

liquid film along an inclined heated plate was carried out by 

Saouli&Aïboud-Saouli [16]. The application of the second 

law analysis of thermodynamics to viscoelastic magneto 

hydrodynamic  flow  over  a stretching surface  was carried 

out by Aïboud&Saouli [17.18]. Irreversibility analysis in a 
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couple stress film flow along an inclined heated plate with 

adiabatic free surface has been studied by Adesanya and 

Makinde [19].Entropy generation and energy conversion rate 

for the peristaltic flow in a tube with magnetic field has also 

been investigated by Akbar [20]. Makinde [21] has 

investigated entropy analysis for MHD boundary layer flow 

and heat transfer over a flat plate with a convective surface 

boundary condition. Entropy analysis for an unsteady MHD 

flow past a stretching permeable surface in nano-fluid has 

been studied by Abolbashari et al. [22]. Chemical reaction 

effect on MHD free convective surface over a moving 

vertical plane through porous medium has been studied by 

Tripathy et al. [23]. S. Baag et al. [24] analyzed the entropy 

generation by applying second law of thermodynamics to 

magnetohydrodynamic flow, heat and mass transfer of an 

electrically conducting viscoelastic liquid  past on a stretching 

surface in a porous medium. 

The objective of this paper is to study the entropy generation 

in viscoelastic fluid over a stretching sheet with prescribed 

wall heat flux in the presence of uniform transverse magnetic 

field. 

II. FORMULATION OF THE PROBLEM 

In two-dimensional Cartesian coordinate system x, y we 

consider magneto-convection, steady, laminar, electrically 

conductor, boundary layer flow of a second grade fluid 

caused by a stretching surface in the presence of a uniform 

transverse magnetic field. As shown in Figure 1, the x -axis is 

taken in the direction of the main flow along the plate and the 

y-axis is normal to the plate with velocity components u , v in 

these directions under the usual boundary layer 

approximations, the governing equations are: 
Continuity Equation: 

∂u

∂x
+

∂v

∂y
= 0 

(1) 

Momentum Equation: 

u
∂u

∂x
+ v

∂u

∂y
= v

∂2u

∂y2 + K0  
∂

∂x
 u

∂2u

∂y2 −
∂u

∂y

∂2u

∂x ∂y
+

∂u

∂y

∂2u

∂y2

+ v
∂3u

∂y3
 −

σB0
2

ρ
u                

 

 

 

 (2) 

Energy Equation:  
By  using  the  usual  boundary  layer  approximations,  the  equation  

of  energy  with  temperature dependent heat source/sink in the flow 

direction is given by: 

 

𝜌𝐶𝑝  𝑢
𝜕𝑇

𝜕𝑥
+ 𝑣

𝜕𝑇

𝜕𝑦
 = 𝑘

𝜕2𝑇

𝜕𝑦2 + 𝑄 𝑇 − 𝑇∞  
 

(3) 

Where Q is the rate of internal heat generation (positive) or 

absorption (negative). 

 

 

 

 
                             

         Fig.1. Physical model for the flow. 

 
The appropriate boundary conditions for velocity field are: 

y = 0,     u = up = λx,    v =  0 (4a) 

𝑦 → ∞   ,    𝑢 → 0,
𝜕𝑢

𝜕𝑦
→ 0   

(4b) 

The thermal conditions for the energy Equation 3 are: 
𝜕𝑇

𝜕𝑦
= qw =  D  

𝑥

𝑙
 

2

   ;  𝑦 = 0  
(5a) 

T →  T∞  ; as   y  →      ∞     (5b) 

 

2. Analytical solution 

The equation of continuity is satisfied if we choose a dimensionless 

stream function 𝜓(x, y) such that 

 

u =
∂ψ

∂y
,   v = −

∂ψ

∂x
 (6) 

Introducing the similarity transformations 

 

𝜂 = 𝑦 
𝜆

𝜈
  , 𝜓(x, y)=x 𝜈𝜆𝑓 𝜂  

 

(7) 

Momentum Eq.2 becomes 

 f ′2(η) − ff ′′(η) = f ′′′(η) − K1 (2f ′f ′′′(η) − f ′′2(η) − ff IV (η))
− Mnf ′(η) 

 

(8) 

 The boundary conditions Equation 4a and Equation 4b become: 

K1 =
K0  λ

ν
     Mn =

σB0
2

ρ λ
 

(9) 

The boundary conditions Equation 5a and Equation 5b become: 

 

η = 0   , f η = 0 et f ′ η = 1 (10a) 

η → ∞.  f ′ η → 0, f ′′ η → 0 (10b) 

The solution of Eq.8, satisfying the boundary conditions Eq. 10a and 

Eq.10b is: 

𝑓 ′ 𝜂 =  𝑒−𝑎𝜂          (a≻0)     with a= 
1+𝑀𝑛

1−𝑘1
 

This gives the velocity  component 

u = λxe−aη (11a) 

       v = − νλ
1

a
 1 − e−aη  

(11b) 

Introducing the dimensionless temperature as: 



Ɵ η =
T−T∞

Tw −T∞

                                (12) 

Where        𝑇𝑤 − 𝑇∞ = D (
𝑥 

𝑙
) 2 

𝜈

𝜆
                       

 

(13) 

Using Eqs.5a, b and Eq. 12-13, then the energy equation Eq. 3 

becomes: 

 

Ɵ′′ 𝜂 +
𝑃𝑟

𝑎
(1 − 𝑒−𝑎𝜂  )Ɵ

′ 𝜂 −

                                2𝑃𝑟𝑒−𝑎𝜂 − 𝛽 Ɵ 𝜂 = 0       

 

(14) 

 

Where  𝛽 =
Q𝜈

𝜆𝑘
𝑃𝑟 =

𝐶𝑝𝜇

𝑘
are respectively the heat source/sink 

parameter and the Prandtl number   

 The corresponding thermal boundary conditions are: 

 

Ɵ′ η = −1  at  η = 0       (15a) 

Ɵ 𝜂      0    as  𝜂         ∞            (15b) 

  introducing the variable 
 

ξ = −
Pr

α2
e−αη 

(16) 

  

The solution of Eq 14 is written as: 

 

ξƟ"(ξ) +  1 −
Pr

2
− ξ Ɵ′(ξ) +  2 +

β

α2ξ
 θ =

  0  

 

(17) 

The boundary conditions Equation 5a and Equation 5b become: 

 

ξ = −
Pr

α2 Ɵ′  −
Pr

α2 = −1 
(18a) 

ξ = 0    Ɵ 0 = 0                                       (18b) 

 
The solution of Eq. (17) satisfying (18a) and (18b) is given by  

 

 

Ɵ η =
− 

−α2

Pr
ξ 

 a +b 

M a+b−r,2b+1,ξ 

A1M a+b−r,2b+1,
−Pr

α2  +A2M a+b−r+1,2b+2,
−Pr

α2  
            (19) 

 

The solution of (19) in terms of η is written as  

 

 

Ɵ η =
−e−α a +b η M a+b−r,2b+1,

−Pr

α2 e−αη  

A1M a+b−r,2b+1,
−Pr

α2  +A2M a+b−r+1,2b+2,
−Pr

α2  
         (20)                          

Where 

 

A1 = −α a + b  , A2 =
Pr

α
 

a+b−r

2b+1
  ,  α =

Pr

2a2 

 

b=  
Pr 2−4βa2

2a2 ,  M  a + b − r, 2b + 1,
−Pr

α2  is kummer function. 

 

 

 

 

 

 

III. SECOND LAW ANALYSIS 

According to Woods [23] the local volumetric rate of entropy 

generation in the presence of a magnetic field is given by: 

 

SG =
k

T0
  

∂T

∂x
 

2

+  
∂T

∂y
 

2

 +
μ

T0
 
∂u

∂y
 

2

+
σB0

2

T0
u2 

 

 

(21) 

Eq. (21) clearly shows contributions of three sources of entropy 

generation. The first term on the right-hand side of Eq. (21) is the 

entropy generation due to heat transfer across finite temperature 

difference; the second term is the local entropy generation due to 

viscous dissipation, whereas the third term is the local entropy 

generation due to the effect of the magnetic field. It is appropriate to 

define dimensionless number for entropy generation rate NS This 

number is defined by dividing the local volumetric entropy 

generation rate SG : 

               NS =
k T0

2

q2 SG  
(22) 

Using (11 a,b ), (20) ,(21) then the Eq.22 can be written as 

 

𝑁𝑆 =
4

𝑋2𝑅𝑒𝑙
Ɵ2(𝜂) + Ɵ′2(𝜂) +

𝐵𝑟𝑅𝑒𝑙

Ω
𝑓 ′′2(𝜂)

+
𝐵𝑟

Ω
 𝐻𝑎2 𝑓 ′2   (𝜂)  

 

 

 

(23) 

 

Where  𝑅𝑒𝑙  and Br are respectively the Reynolds number and the 

Brinkman number. Ɵ 𝜂  and Ha are respectively the dimensionless 

temperature difference and the Hartman number. These number are 

given by the following relationships  

𝑋 = x/l,      𝑅𝑒𝑙 = 𝑢𝑙𝑙 𝜈 ,       𝐻𝑎 = 𝐵0𝑙 𝜎 𝜇 ,    𝛺 = 𝛥𝑇/𝑇0  ,      

𝐵𝑟 = 𝜇𝑢𝑥
2 𝑘𝛥𝑇 . 

IV.  RESULTATS AND DISCUSSION 

 

A boundary layer problem for momentum and heat transfer in a 

viscoelastic fluid under the influence of a transverse uniform 

magnetic field over stretching sheet prescribed has been solved 

analytically using Kummer’s functions and analytic expressions of 

non-dimensional temperature profile for boundary condition namely 

prescribed wall heat flux. The velocity and temperature have been 

used to compute the entropy generation. 

In all the figures of dimensionless temperature profiles plotted we 

notice that the  temperature is maximum at the wall where heat flux 

is imposed and minimum at the free surface whatever the values of 

the all the parameter studied. It is clear from figure 2 and 3 that an 

increase of viscoelastic parameter and magnetic parameter results an 

increase of temperature this is due to the thermal boundary layer 

increases with the magnetic parameter. 

Figure 4 depicts the temperature profiles Ɵ (η) as a function of η for 

different values of the Prandtl number Pr. As it can be noticed, 

temperature decreases with η whatever is the value of the Prandtl 

number, For a fixed value of η, the temperature Ɵ (η) decreases with 

an increase in Prandtl number, which means that the hydrodynamic 

boundary layer is thicker than the thermal boundary layer. Figure 5 

shows the temperature profiles as function of η for various values of 

the heat source/sink parameter .For a fixed value of η, the 

temperature Ɵ (η) decreases with a decrease in heat source/sink. 

This is due to the increase of the heat generation inside the boundary 

layer leading to higher temperature profile. 

 

 

 



 

 

Fig. 2. Effect of the viscoelastic parameter on the 

temperature 

 

 

Fig. 3. Effect of the magnetic parameter on the 

temperature. 

 

 
Fig. 4. Effect of the Prandtl number on the temperature. 

 

The influence of viscoelastic parameter, magnetic 

parameter, heat source/ heat sink on The entropy 

generation number Ns (Equation 23) are illustrates in 

Figure 6.7.8.9 we can conclude that an increase of all 

this parameters has increased the entropy generation 

number moreover this last is higher near the surface 

where the heat flux imposed and velocity are at their 

maximum values, this means that the surface acts as 

strong source of irreversibility. 

 

 
Fig.5. Effect of the heat source/sink parameter on the 

temperature. 

 

 

 

 

Fig.6. Effect of the viscoelastic parameter on the entropy 

generation number K1 

 

 

 

Fig.7. Effect of the magnetic parameter on the entropy 
generation number. 

 

 



 
Fig.8. Effect of the heat source/ heat sink parameter on the 

entropy generation number. 

 

 
Fig.9. Effect of the Prandtl number on the entropy generation number. 

 
Fig.10. Effect of Reynolds number on the entropy generation number. 

 

          
 
Fig.11. Effect of the dimensionless group on the entropy generation number. 

 

 
 

 

The figure.9 illustrates the variations of on the entropy generation 

number Ns as a function of η for different values of the Prandtl number. 

            For a given η thickness, the entropy production decreases with 

the increase of the Prandtl number. This is due to the fact that the 

temperature decreases with the increase of the Prandtl number. 

The influence of the Reynolds number ReL on the entropy generation 

number Ns (first, third Equation 23) is plotted on Figure 10. For a given 

value of η, the entropy generation number increases as the Reynolds 

number increases.  The augmentation of the Reynolds number increases 

the contribution of the entropy generation number due to fluid friction, 

heat transfer in the boundary layer. The effect of the dimensionless 

group parameter BrΩ-1on the entropy generation number Ns (third and 

fourth term of Equation 24) is depicted in Figure 11. The dimensionless 

group determines the relative importance of viscous effect. For a given 

η, the entropy generation number is higher for higher dimensionless 

group. This is due to the fact that for higher dimensionless group, the 

entropy generation numbers due to the fluid friction. 

 

 
             Fig.12. Effect of the Hartmann number on the entropy 

generation number. 

 

 
Fig.13. Effect of the characteristic length on the entropy generation 

number. 

 

    The effect of the Hartmann number Ha on the entropy 

generation number Ns (fourth term of Equation 23) is plotted 

in Figure 12. For a given η, as the Hartmann number increases, 

the entropy generation number increases. The entropy 

generation number is proportional to the Hartmann number 

which   proportional   to   the   magnetic   field.   The   

presence   of   the   magnetic   field   creates additional entropy. 

The variation of the entropy generation with different values of 

characteristic length is shown on the fig.13, for fixed value an 

augmentation of characteristic length decreases the entropy 

generation this behavior can be interpreted by the energy lost 

inside the fluid flow. 

 

 



 

V. CONCLUSION 

The velocity and temperature profiles are obtained 

analytically and used to compute the entropy generation 

number in a viscoelastic fluid over a stretching sheet 

prescribed wall heat flux subject to a transverse magnetic 

field. 

The effects of the magnetic parameter and the viscoelastic 

parameter on the longitudinal and transverse velocities are 

discussed. The influences of the Prandtl number, the 

magnetic parameter and the heat source/sink parameter on 

the temperature profiles are presented. The dependence of the 

magnetic parameter is also presented. As far as the entropy 

generation number is concerned, its dependence on the 

magnetic parameter, the Prandlt, the Reynolds number, the 

dimensionless group, the Hartmann number, the ratio of the  

dimensionless  concentration  difference  to  the  

dimensionless  temperature  difference  and  the constant 

parameter are illustrated and analyzed. 

From the results the following conclusions could be drawn: 

 (a) The longitudinal and the transverse velocities decrease as 

the magnetic parameter and the viscoelastic parameter 

increase. 

(b)The temperature increases as the viscoelastic, the 

magnetic and heat source sink parameter increases, but it 

decreases as the Prandtl number increases. 

 (c) The entropy generation number increases as Hartman 

number, dimensionless group parameter and Reynolds 

number increase.  

(d) The entropy generation number is slightly influenced by 

Prandtl number, viscoelastic parameter and heat source/heat 

sink parameter.  

  (e) The surface acts as a strong source of irreversibility. 

 

 

Nomenclatures 
 

a constant 

b constant 

B0 uniform magnetic field strength 

Br Brinkman number  

Cp specific heat of the fluid 

f Dimensionless function  

Ha Hartman number  

k thermal conductivity of the fluid 

K1 Viscoelastic parameter  

Mn Magnetic parameter  

Ns Entropy generation number 

Pr  Prandlt number 

Q heat generation coefficient  

u Axial velocity  

l Characteristic length 

Ω Dimensionless temperature difference  

SG local volumetric rate of entropy 

generation  

SG0 Characteristic volumetric rate of 

entropy generation  

T Temperature  

𝜎 Electric conductivity subscripts  

Rel Reynolds number based on the 

characteristic length  

up Plate velocity 

v Transverse velocity 

x Axial distance 

y transverse distance 

a Positive constant 

BrΩ-1 Dimensionless group parameter heat 

β Source/heat sink parameter 

λ Proportional.constant 

ξ Dimensionless variable 

η Dimensionless variable 

µ Dynamic viscosity of the fluid 

𝜈 Kinematic viscosity of the fluid 

ΔT Temperature difference  

Ɵ Dimensionless temperature  

ρ Density of the fluid 

∞ Far from sheet 

ul Plate velocity based on the 

characteristic length  

P Plate 
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