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Abstract—Bayesian networks are probabilistic graphical 

models, and are represented by a directed acyclic graph (DAG). In 

recent years, their popularity and their use has increased 

significantly in the biological and technological fields, such as the 

identification of printing problems on Windows (Microsoft), the 

real-time fault diagnosis for (Nasa), the diagnosis of faults or 

defects (Hewlet Packard, Intel, American Airlines), the shape 

recognition and data mining (Nasa) and the medical diagnosis 

(BiopSys, Radiology Department of the CHU of Tours, American 

Diabetes Association). The processing of a very large number of 

variables during the automatic learning of Bayesian network 

structure is classified as a NP-Difficult problem. In this context, 

any proposals to mitigate the impact of this problem are strongly 

solicited by the scientific community especially after the outbreak 

of the scourge "Big Data" in recent years. Thus, the main objective 

of this work is to implement and to improve an existing approach 

[1],[2]  and to validate it on a fairly large real database to alleviate 

the algorithmic complexity of the learning process structure of the 

Bayesian network without losing information.  

Keywords— Machine learning; Bayesian networks; Classification; 

Structure learning; clustering; Algorithmic complexity.  

I. INTRODUCTION 

    With the formalism of the Bayesian networks, one can 

construct an efficient classifier. It is a model with n variables 

and presented by n + 1 nodes [3],[4],[5]. The simplest model 

is that of the Bayesian naive classifier (CBN) [6]. It presents a 

central node that is called "class node" connected to the other 

nodes that are the descriptive variables (Figure 1). 

 

Fig. 1.  Graphical representation of the naive Bayesian classifier. 

     This CBN is used when the learning set is of a moderate 

size, and the attributes that describe the instance are 

independent [6]. For this classifier, each instance of C (class 

variable) is described by the variables V1, V2, ..., Vn. For this 

type of classifier, the descriptive variables can contribute to 

the classifier in the same way but the relations between them 

are not represented. Indeed, the information of each attribute 

is separated from the information of the other attributes, which 

is far from perfect for a classification problem. This formalism 

has been enriched by several propositions considering the 

relationships between descriptive variables such as the tree-

enhanced CBN [4], but the restriction of the number of 

parents of a node can present a default.  As a result, many 

practitioners have focused on learning the Bayesian classifier 

(CB) structure using the same algorithms that are used for 

learning the structure of a classical Bayesian network, 

implying the consideration of the node of the variable to be 

predicted as an ordinary node [7],[8],[9],[10],[11],[12],[2]. 

(eg, .The major disadvantage of this approach is the super-

exponential algorithmic complexity Indeed, the possible 

number of DAGs is expressed by the following recursive 

formula [13]: 

            (1) 

,where n is the number of variables. 

      In this context, any proposals to mitigate the impact of this 

problem are strongly solicited by the scientific community 

especially after the outbreak of the scourge "Big Data" in 

recent years. 

     The rest of this article is organized as follows: in next 

section, we will present the Bayesian networks (BN). In 

Section 3, we will try to alleviate the algorithmic complexity 

of the process in question and consequently  will reduce the 

execution time based on an existing approach [1], trying to 

improve it by adding the CBN as a starting structure, adapting 

it to quantitative variables, trying to overcome the local 

optima when learning Bayesian network structure and 

validating it on a large real identification database genes 

which are involved in the genodermatosis ( that is any skin 

condition characterized by a specific mode of genetic 

transmission). Finally, we will conclude before suggesting 

relevant potential perspectives for future research. 
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II. BAYESIAN NETWORK 

     Bayesian networks are probabilistic graphic models, 

     A Bayesian network B = (G, Ө) is defined by [14]: 

 ststructure G = (V, E) which is a directed graph 

without a circuit (DAG) where V is the set of nodes 

which represent a set of random variables  X = 

( ,…, ) and E is the set of arcs 

 the parameters Ө = [P(  | Pa( )] which are 

probability distributions for the verification of B at 

the Markov condition. 

      The Bayesian networks are graphical models, which 

represent the probabilistic relations for a set of random 

variables. They are very readable graphs of the probability 

laws joined between the variables (Pearl, 1985). 

The distribution of probabilities on all variables is defined by 

[14]: 

                      (2) 

       Bayesian networks are based on the conditional 

probability and the Bayes theorem in order to calculate the 

probabilities of the different nodes of the network. 

III. METHODOLOGY 

      In our work, we will try to validate the existing approach 

[2] on a fairly large real database with quantitative variables, 

trying to overcome the local optimums when learning the 

Bayesian classifier structure. Our approach is based on the 

concept of clustering the structure learning, so we propose in 

the following to present, first, the methodologies used for the 

clustering, then we will present our behavior for the clustering, 

learning of the structure as well as our proposals to avoid the 

local optimums when applying this process with heuristics. 

A. Clustering of the variables 

      '' The automatic classification is the most widespread of 

the descriptive techniques of data analysis and data mining. It 

is used when there is a large volume of data in which one 

seeks to distinguish the homogeneous subsets, and is capable 

of differentiated treatments and analyzes. '' [15]. 

      Indeed, two major types of classification algorithms are 

distinguished: one which is partitioning methods [16],[17] and 

the other is hierarchical ascending classification methods. It is 

known that the hierarchical ascending classification allows 

good results to be obtained even if the criterion of partitioning 

is not global. Indeed, this criterion depends on the classes 

already obtained, two variables in different classes can never 

be compared. These algorithms are quite complex (complexity 

of the order of O (n³) [15]. Partitioning algorithms are favored 

to those who are hierarchical by the fact that there is a 

continuous improvement of the quality of the classes and also 

for their linear algorithmic complexities (for the most 

widespread) [15]. However, the number of the desired classes 

must be given in parameters to these algorithms, which 

present their major disadvantage. 

It is noted that the database that will be processed during our 

work consists of mixed variables (mostly quantitative 

variables and some qualitative variables). Consequently, we 

will use a variant of the k-means algorithm [18] that treats 

these two types of variables simultaneously [19]. For the 

implementation of the clustering process, we will use the 

ClustOfVar package with the R language [20]. For the choice 

of the optimal class number, we will use a function (called 

stability), which is developed in the ClustOfVar package and 

based on the boostrap technique [20]: which will be presented 

in the following steps: 

- The application of the hierarchical ascending classification 

algorithm on all the observations, 

- The application of the hierarchical ascending classification 

algorithm on B bootstrap replications of n observations, 

- For each replication, the partitions obtained from 2 to p-1 

classes are compared to the partitions of the initial hierarchy 

with the use of the corrected Rand criterion [21] 

- The average of the corrected Rand criteria for each partition 

obtained (from 2 to p-1) are represented graphically. The 

optimum class number will be the one preceding a sudden fall 

of the average of the corrected Rand criterion [20]. 

B. Learning of the structure 

          An automatic structure learning will be applied for each 

cluster by including the class variable. The resulting structures 

will be gathered around this variable to obtain the final 

structure. 

          First, we will try, to help the heuristics that will be used 

(see Subsection 3.2.1 and Subsection 3.2.2) by adding the 

structure of the Bayesian naïve classifier as a structure of 

departure. We will see later that this behavior has greatly 

improved the results (see Appendix B). In a second step, we 

will try to add the treatments to avoid the local optimums 

when using two algorithms tested during our work, namely the 

Hill Climbing [22],[23],[24],[25],[26],[27]  and the Tabu 

Search[28],[29],[30],[31],[32],[33],[34],[22],[35],[36],[37], 

[23],[24],[25],[38]. 

1)  The Hill Climbing 

      The Climbing algorithm (HC) (sometimes called simple 

local search) is the simplest form of the improvement methods. 

It starts from an initial state that can be an empty network or a 

randomly generated structure by iteratively performing the 

operations including adding, inverting, and deleting by 

maximizing the improvement of a score that reaches at an 

optimum [26] (See algorithm 1). 

Algorithm1: Climbing algorithm (Hill Climbing (HC)) 

Notes: 

G: a Bayesian network graph. 

V: the set of nodes that represent a set of random variables. 

ScoreG: the score of the Bayesian network. 

G *: a modified Bayesian network graph. 

ScoreG *: the score of the modified Bayesian network. 

 

 

 



Algorithm : Hill Climbing 

Choose a network structure G on V, usually (but not 

necessarily) empty. 

 Calculate the score of G, rated ScoreG = Score (G). 

 maxscore = ScoreG. 

Repeat the following steps while maxscore increases: 

To verify that adding, removing, or inverting an arc does 

not result in a cyclic network: 

To calculate the modified network score G *, ScoreG * = 

Score (G *): 

If ScoreG *> ScoreG then G = G * and ScoreG = ScoreG *. 

To update the maxscore with the new ScoreG value. 

Get the acyclic graphic directed G. 

2)  The Tabu Search 

        The Tabu Search developed by Fred Glover in 1986 [28], 

is a global optimization algorithm that controls the integrated 

heuristic technique. It provides a very flexible search behavior 

by using the adaptive memory. 

       Its basic principle is to continue the search whenever it 

encounters a local optimum. The process is performed using a 

memory that records the recent search history to avoid the 

cyclical path. This memory is a file with a variable size 

according to the choice of the user. 

      The passage from the current solution to a neighboring 

solution is accepted if it is not included in the Tabu queue (see 

algorithm 2). 

Algorithm 2: Tabu Search algorithm  

Notes: 

G: a Bayesian network graph. 

V: the set of nodes that represent a set of random variables. 

L: an empty queue of the size n 

ScoreG: the score of the Bayesian network. 

G *: a modified Bayesian network graph. 

ScoreG *: the score of the modified Bayesian network. 

 

Algorithm : Tabu Search 

To choose a network structure G on V, usually (but not 

necessarily) empty. 

To define an empty queue L of size n (n is chosen by the user) 

To calculate the score of G, rated ScoreG = Score (G). 

 maxscore = ScoreG. 

L receives G 

Repeat the following steps while maxscore increases: 

Verify that adding, removing, or inverting an arc does not 

result in a cyclic network: 

To calculate the modified network score G *, ScoreG * = 

Score (G *): 

If ScoreG *> ScoreG then G = G * and ScoreG = ScoreG * 

and L = G. 

To update the maxscore with the new ScoreG value. 

To obtain the acyclic graphic directed G. 

        For the Climbing algorithm, we will use a method to 

restart (n times) the process to its end by disrupting the found 

structure (addition, inversion and deletion of arcs) in order to 

avoid an optimum local. For the Tabu Search algorithm, we 

will use a kind of queue to save the previous passages in order 

to avoid redoing a path which is already traveled. 

IV. EXPERIMENTATION 

A. DataBase 

         We will apply our approach to a real database 

(produced by Dr. Lilia Romdhane, University of Carthage, 

researcher at the Institut Pasteur in Tunis) which is composed 

of 224 variables with 1290 observations. The latter 

representing 648 genes implicating the Genodermatosis (any 

skin condition characterized by a specific mode of genetic 

transmission) and 642 genes implicated in other types of skin 

diseases [39][40]. The aim will be to construct a model to 

classify new genes in relation to their implications for 

Genodermatosis. During our work and for each test (there will 

be 10 learning tests and evaluations for each random division 

of the observation database into learning data and test data), 

each time 90% of the database of observations will be used for 

learning and the rest will be used during the testing phase. 

B. Clustering of the variables 

       The application of the k-means algorithm is preceded by 

the use of the hierarchical ascending algorithm followed by 

the bootstrap technique for the estimation of the optimal 

number of clusters. According to the stability graph (see 

Figure 2), the corrected Rand average decreases as soon as the 

score is divided into three, so we decided to choose the 

partition in 2 that will be introduced in the k-means algorithm. 

The final result of clustering is presented in Table 2  

(Appendix A). 

 
Fig. 2.  Graph of partition stabilities from two to 224 variables 

C. Learning of the structure 

      The machine used in this step is a personal computer with a 

Core i3 microprocessor with 3.58 gigabytes of RAM. 

      The results of good classifications obtained (see Appendix 

B for the comparison of the classificated results following the 

learning of the structure by adding the structure of the naive 

Bayesian classifier as a starting structure and the classification 

results following the learning of the structure without adding a 

starting structure In what follows we will discuss the results in 

terms of execution time for each method and the algorithm 



used, followed by a summary table (Table 1) presenting all the 

results together. 

          From these 4 experiments, the gain in terms of execution 

time is certain, but it remains to verify the accuracy of the 

classification models according to our new approach. 
TABLE 1 

SUMMARY OF THE CPU EXECUTION TIMES FOR THE DIFFERENT ALGORITHMS 

AND THE VARIOUS SCORES TESTED. 

D. Inference 

       We randomly divided the database 10 times (90% of the 

database is still used for learning and the remaining 10% for 

the test) in order to test all the constructed models and thus, we 

compare the percentages of good classification after learning 

all the variables simultaneously with those obtained after them 

according to our new approach. The results in terms of 

percentages of good classification are represented in the form 

of histograms for each algorithm with its score whereas the 

numerical results are presented in the form of tables in 

Appendix C. 

 
 
Fig. 3. Shows a comparison of the inference values following the learning of 

all the variables simultaneously and the learning according to our approach, 

using the Hill Climbing algorithm with the aic-g score. 

 

Fig. 4. Shows a comparison of the inference values following the learning of 

all the variables simultaneously and learning according to our approach, using 
the Hill Climbing algorithm with the bic-g score. 

 

Fig. 5. Shows a comparison of the inference values following the learning of 

all the variables simultaneously and learning according to our approach, using 

the Tabu Search algorithm with the aic-g score. 

 

Fig. 6. Shows a comparison of the inference values following learning all the 

variables simultaneously and learning according to our approach, using the 

Tabu Search algorithm with the bic-g score. 

       We calculated the average of the percentages of good 

classification of the 10 tests following the learning of all the 

variables simultaneously and following the learning of the 

variables according to our approach (by applying the Hill 

Climbing and Tabu search algorithms with the aic-g and bic-g). 

The result is presented in the form of a histogram (Figure 7), 

while the numerical result is presented in a table in Appendix 

C. 

 

Fig. 7. Shows a comparison of the percentage averages of good classification 
of 10 tests following all variables learning simultaneously and following 

learning variables according to our approach (Using Both Hill Climbing and 

Tabu Search algorithms with aic-g and bic-g scores) 

E. Discussion 

        During our work, we tried to validate (on a real database 

with quantitative variables) by improving an existing approach 

that aims to alleviate the algorithmic complexity when learning 

the Bayesian network structure. This method relies first of all 

on a step of automatic clustering of the variables and then on 

the learning of structures of the variables of each cluster with 

the class variable before gathering all these resulting structures 

around the latter. 

 

Algorithms 

 

Methods 

Hill 

Climbing 

with score 

aic-g 

Hill 

Climbing 

with score 

bic-g 

Tabu 

search with 

score 

aic-g 

Tabu 

search with 

score 

bic-g 

Classical Approach 80.02974 

min 

49.91092 

min 

65.33142 

min 

36.50834 

min 

Our 

approach 

Cluster1 19.32753 

min 

13.73562 

min 

29.23134 

min 

10.96788 

min 

Cluster2 2.591396 

min 

1.152383 

min 

2.102104 

min 

1.697241 

min 

Sum 21,91892 

min 

14,88800 

min 

31,33344 

min 

12,66512 

min 



       In structure learning, we first tried to help the heuristics by 

adding the structure of the Bayesian naive classifier as the 

starting structure (The results of this behavior proved 

beneficial, see Appendix B). Then, we tried to add treatments 

to avoid local optimums when applying the two algorithms; 

Climbing and Tabu Search. For the Climbing algorithm, we 

used a method that allows the process to be restarted (several 

times) by disrupting the found structure (addition, inversion 

and deletion of arcs) in order to avoid optimum. For the 

Tabu Search algorithm, we used a kind of memory queue 

that records the recent history of the search in order to avoid 

a cyclical path. 

       Thanks to our new approach, we have succeeded in 

alleviating the algorithmic complexity of the Bayesian 

network structure learning process (see comparative table of 

execution times) not only without losing information but 

also by improving the percentages of good classifications 

compared to that found using the classical approach, which 

was not the case before our improvements [1]. Indeed, the 

different histograms as well as the different confusion 

matrices show an improvement of the results using our 

approach for all the tests performed, this improvement can be 

explained by the over-learning generated by the processing of 

all (several) variables simultaneously . 

V. CONCLUSION 

       In this work we have tried to improve and validate 

an existing approach on a real database with quantitative 

variables whose goal is to alleviate the algorithmic 

complexity when learning Bayesian network structure. 

Our approach is based on the concept of clustering 

upstream of the learning of the structure of the variables 

of each cluster with the class variable before assembling 

all these resulting structures around the cluster to avoid 

local optimums when applying this process with 

heuristics. 

      Following these very positive results, the presented 

and tested behavior could be proposed as a solution allowing to 

distribute the calculations using the "Big Data" tools available 

(Example: Hadop, Spark etc ...). And in this sense, the next 

tasks to be undertaken following this work: 

- To develop and to implement our new 

approach following the philosophy of the 

MapReduce
1
 paradigm (Hadoop), 

- To test our approach (implement with 

Mapreduce / Hadoop) on large masses of 

data distributed on HDFS (Hadoop File 

System) platforms, 

- And to provide a solution with Apache Spark
2
 to parallelize 

the processing of our approach and test on a cluster
3
 

                                                 
1

 An essential component of the Apache Hadoop software 

framework. It is a software framework for the distributed 

processing of large data sets on clusters of basic hardware. 

This is a subproject of the Apache Hadoop project. The 

framework takes care of the scheduling, the monitoring,           

and the re-running tasks that have failed. 

Appendix A 
TABLE 2 

 Clustering result of the variables in the database 

Appendix B 
TABLE 3 

PERCENTAGE OF A GOOD CLASSIFICATION, AFTER THE APPLICATION OF THE 

ALGORITHMS WITH DIFFERENT SCORES. 

 

 
TABLE 4 

 AVERAGE CLASSIFICATION OF THE 10 TESTS, AFTER THE APPLICATION OF THE 

ALGORITHMS WITH THE DIFFERENT SCORES. 
 

 

 

 

                                                                                     
2
 Is an open source engine developed specifically for large-

scale data processing and analysis. Spark offers the ability to 

access data from a variety of sources including Hadoop 

Distributed File System (HDFS) , OpenStack Swift, Amazon 

S3, and Cassandra. 
3
 Is a cluster of servers for performing Big Data data analyzes 

quickly and efficiently, the different computers that make up 

the cluster Discover how Hadoop clusters work 

Cluster 1 :   147 Variables Cluster  2  : 77 variables 

V1 ; V6 ; V7 ; V9 ; V10 ; V11 ; V12 ; V13 ; V14 ; 

V15 ; V17 ;V20 ; V22 ; V25 ; V28 ; V29 ; V30 ; 

V31 ; V32 ; V33 ; V35 ; V36 ; V37 ; V38 ; V39 ; 

V40 ; V41 ; V42 ; V44 ; V45 ; V46 ; V47 ; V48 ; 

V49 ; V50 ; V51 ; V52 ; V54 ; V55 ; V57 ; V59 ; 

V60 ; V61 ; V62 ; V63 ; V64 ; V65 ; V66 ; V67 ; 

V69 ; V70 ;V71 ; V72 ; V73 ; V74 ; V75 ; V77 ; 

V80 ; V81 ; V82 ; V83; V84 ; V85 ; V86 ; V87 ; 

V89 ; V92 ; V94 ; V96 ; V97 ; V100 ; V101 ; 

V104 ; V105 ; V106 ; V112 ; V113 ; V114 ; 

V116 ;V117 ; V121 ; V124 ; V125 ;V126 ; V127 ; 

V128 ; V129 ;V130 ; V131 ; V132 ; V133 ;V134 ; 

V137 ; V138 ; V142 ;V143 ; V144 ; V149 ; 

V151;V154;V155;V156;V157 ;V158;V160;V164; 

V166 ;V167 ; V170 ; V173 ; V174 ;V175 ; V176 ; 

V179 ;V182 ; V185 ; V187 ; V188 ; V190 ;V191 ; 

V193 ; V194 ; V196 ; V197 ; V198 ; V200 ; 

V202 ;V203 ; V206 ; V208 ; V209 ;V210 ; V212 ; 

V214 ; V215 ;V217 ; V218 ; V221 ; V223 ;V224 ; 

V95 ; V99 ; V103 ; V107 ;V111 ; V115 

V2 ; V3 ; V4 ; V5 ; V8 ; V16 ; V18 ; 

V19 ; V21 ; V24 ; V26 ; V27 ; V34 ; 

V43 ; V53 ; V56 ; V58 ; V68 ; V76 ; 

V78 ; V79 ; V88 ; V90 ; V91 ; V93 ; 

V98 ; V102 ; V108 ; V109 ; V110 ; 

V118 ; V119 ; V120 ; V122 ; V123 ; 

V135 ; V136 ; V145 ; V146 ; V147 ; 

V148 ; V150 ; V152 ; V153 ; V159 ; 

V161 ; V162 ; V163 ; V165 ; V168 ; 

V169 ; V171 ; V172 ; V177 ; V178 ; 

V180 ; V181 ; V183 ; V184 ; V186 ; 

V189 ; V192 ; V195 ; V199 ; V201 ; 

V204 ; V205 ; V207 ; V211 ; V213 ; 

V216 ; V219 ; V220 ; V222 ; V139 ; 

V140 ; V141 
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tabu + aic 

Our 

approach 
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structure 
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Our 

approach 

tabu + bic 

Test 

1 
62,79069767 68,99224806 64,34108527 65,89147287 

 

58,13953488 
65,89147287 

 

61,24031007 
66,66666667 

Test 

2 
65,89147286 70,54263566 56,58914728 68,99224806 

 

53,48837209 
63,56589147 

 

59,68992248 
65,11627907 

Test 

3 
61,24031007 67,44186047 65,89147286 68,99224806 

 

62,01550387 
68,99224806 

 

60,46511627 
68,99224806 

Test 

4 
62,01550387 65,89147287 62,01550387 68,21705426 

 

53,48837209 
68,99224806 

 

58,13953488 
69,76744186 

Test 

5 
66,66666666 69,76744186 64,34108527 65,89147286 

 

57,36434108 
64,34108527 

 

56,58914728 
68,21705426 

Test 

6 
63,56589147 67,44186047 58,91472868 62,79069767 

 

61,24031007 
66,66666667 

 

61,24031007 
62,79069767 

Test 

7 
62,79069767 67,44186047 54,26356589 62,79069767 

 

61,24031007 
69,76744186 

 

63,56589147 
65,89147286 

Test 

8 
66,66666666 68,99224806 58,91472868 70,54263566 

 

58,13953488 
71,31782946 

 

61,24031007 
71,31782945 

Test 

9 
60,46511627 69,76744186 70,54263565 74,41860465 

 

66,66666666 
73,64341085 

 

53,48837209 
65,89147286 

Test 

10 
59,68992248 77,51937984 63,56589147 68,99224806 

 

55,81395348 
68,21705426 

 

55,81395348 
68,99224806 
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starting 
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tabu + aic 

Our 

approach 

tabu + aic 

Without 

starting 

structure 

tabu + bic 

Our 

approach 

tabu + bic 

Average 

classification 

of the 10 

tests 0,631782945 0,693798449 

 

 

 

0,619379844 0,677519379 

 

 

 

0,587596899 0,681395348 0,591472868 0,673643410 



Appendix C 

TABLE 5 
PERCENTAGE OF GOOD CLASSIFICATION, AFTER THE APPLICATION OF THE 

ALGORITHMS WITH THE DIFFERENT SCORES. 
 

TABLE 6 

AVERAGE CLASSIFICATION OF THE 10 TESTS, AFTER THE APPLICATION OF THE 

ALGORITHMS WITH THE DIFFERENT SCORES 
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