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Abstract— In this paper, our objective is to provide to the 

solar power plant managers a simple and an adequate 

mathematical models for the prediction of global solar radiation 

in order to reconstruct the global solar radiation data series in 

the absence or the rarity of real measurement. In this 

contribution we are interested to apply the Box and Jenkins 

method for modeling and predicting the global solar radiation 

using ARMA model. Different models have been developed and 

compared with each other using statistical criteria (MAE, MSE, 

RMSE, and MAPE). The obtained results demonstrate that the 

most adequate model for modeling our time series is the process 

MA (1) added to a polynomial tendency of order r = 8, with a 

linear correlation coefficient R = 0.99942 Close to one which 

describe the approximation of the output and the target. 

    Keywords— ARMA; Box-Jenkins approach; Databases; Global 

solar radiation; Identification; Modelization. 

I.  INTRODUCTION  

The sun can satisfy all our needs if we know how to 
rationally exploit the energy it radiates to the earth. It shines in 
the sky for almost 4.6 billion years and scientists have 
calculated that it is half its existence [1]. It is difficult for us to 
imagine that in the course of a year the sun diffuses into the 
earth ten thousand times more energy than that consumed by 
the whole world population [2]. Today it seems trivial not to 
benefit because we have the necessary technological means. 
Moreover, it must be considered that is the cleanest and most 
abundant renewable energy source available, and Morocco has 
some of the richest solar resources in the world [3]. 
Contemporary technology can harness this energy for a 
diversity of uses, as well as producing electricity, providing 
light or a comfortable interior environment, and heating water 
for domestic, commercial, or industrial use. But when setting 
up an installation project, we usually confront the problems 
related to the rarity or even the absence of the global solar 
radiation series of measurements. To overcome these 
difficulties, several models have emerged that consist in 
reconstructing the global solar radiation series using models 
developed from meteorological data such as temperature, 
humidity, duration of sunshine...etc. In the absence of climate 
data, it is useful to have an idea about the evolution of the 
radiation. Since the solar radiation received on the ground is 
composed of a deterministic component and stochastic 

component, it has been shown that the sequences of the latter 
can be described and simulated by artificial intelligence 
techniques [4,5,6], or by statistical type models, that use the 
previous data to predict the observations [7], statistical 
regression models AR (Auto-Regressive), MA (moving 
Averages) and ARMA (Auto Regressive moving Averages). 
These models have proved their effectiveness in the prediction 
and modeling of solar processes [8,9,10]. In this paper we used 
the Box-Jenkins approach for modeling the global solar 
radiation to generate estimated values in case of absence or the 
scarceness of data. 

II. THEORY FOR MODELING THE TIME SERIES WITH AN 

ARMA 

A. The Autoregressive Moving Average process 

ARMA(p,q) model is a grouping of AR(p) and MA(q) 
models it is appropriate for univariate time series modeling. In 
an AR(p) model the future value of a variable is supposed to be 
a linear combination of p previous observations and a random 
error together with a constant term. Mathematically the AR(p) 
model can be articulated as [11,12]: 

         𝑋𝑡 =  µ +  φ1𝑋𝑡−1  + φ2𝑋𝑡−2+ . . . + φ𝑝  𝑋𝑡−𝑝  + ε𝑡      

Such as 𝑋𝑡 and ε𝑡  are respectively the real value and the 
random error at time period t, φi (i = 1, 2,..., p) are the model 
factors and µ is a constant. The numeral constant p is known as 
the order of the model. Occasionally the constant term is 
omitted for simplicity.  

Usually for estimating AR process parameters using the 
given time series, the YuleWalker equations [13] are used. 

Just as an AR (p) model regress against previous values of 
the series, an MA (q) model uses past errors as the descriptive 
variables. The MA (q) model is given by [11,12,13]: 

          𝑋𝑡  =  µ + ε𝑡 + 𝜃1 ε𝑡−1 + . . . +𝜃𝑞εt−q 

Here μ is the mean of the series, 𝜃j (j = 1, 2,…, q) are the 

model parameters and q is the model order. The random errors 
are assumed to be a white noise process [12,13], i.e. a 
sequence of independent and identically distributed (i.i.d) 
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random variables with zero mean and a constant variance σ2
. 

Mostly, the random errors are supposed to follow the typical 
normal distribution. Thus theoretically a moving average 
model is a linear regression of the current observation of the 
time series against the random errors of one or more earlier 
observations. Appropriate an MA model to a time series is 
more complicated than appropriate an AR model because in the 
former one the random errors terms are not fore-seeable. 
Autoregressive (AR) and moving average (MA) models can be 
efficiently joined together to form a general and suitable class 
of time series models, known as the ARMA models. 
Mathematically an ARMA(p,q) model is represented as 
[11,12,13]: 

 

      𝑋𝑡  =  µ + ε𝑡 + ∑ φi𝑋𝑡−i
p
i=1 +  ∑ 𝜃j ε𝑡−j

q
j=1   

Here the p,q orders model refer to p autoregressive and q 
moving average terms. Frequently ARMA models are 
deployed using the lag operator [12,13] notation. The lag or 
backshift operator is defined as LXt= Xt−1. Polynomials of lag 
operator or lag polynomials are used to represent ARMA 
models as shadows [12]:  

AR (p) model:  εt =φ(L)Xt.    

MA (q) model: Xt = θ(L)εt.  

ARMA (p,q) model: φ(L)𝑋𝑡= θ (L) ε𝑡. 

Here φ(𝐿) = 1 − ∑ φ𝑖𝐿
𝑖𝑝

𝑖=1   and   θ(L) = 1 + ∑ θjL
jq

j=1 . 

It is exposed in [13] that an significant property of AR(p) 
model is invertibility, i.e. an AR(p) model can permanently be 
written in terms of an MA(∞) model. Although for an MA(q) 
model to be invertible, all the roots of the equation θ (L) = 0 
must lie external the unit circle. This condition is identified as 
the invertibility condition for an MA process. 

B. Unit root and stationarity tests 

The stationarity tests make it possible to check whether a 
series is stationary or not. The main tests used in the literature 
are the Augmented Dickey-Fuller and Philipps-Perron tests for 
which the null hypothesis is the non-stationarity of the series 
studied [14]. 

C. Selection criteria : AIC and BIC 

It is more expensive in computations to deduce the order p 
and q for an ARMA(p,q) process, since a two-variable function 
must now be minimized. The AIC and BIC criteria for an 
ARMA(p,q) process take the following form [15]: 

and       {  
𝐴𝐼𝐶 = 2k − 2 ln(𝐿̂)        

𝐵𝐼𝐶 = 𝑙𝑛(𝑛)𝑘 − 2ln (𝐿̂)


𝐿̂ : The maximized value of the likelihood function of the 

model M, i.e.  𝐿̂ = p(𝑋/θ̂, M ), where θ̂ are the parameter 
values that maximize the likelihood function. 

𝑋 : The observed data. 

𝑛 : The number of data points in X, the number of 
observations, or equivalently, the sample size. 

k  : The number of free parameters to be estimated. 

 In order to minimize these functions, one method 
consists in making two iterative loops on p and q to test all the 
pairs couples (p,q) up to certain terminals p < P and q < Q. 

Inside these loops, the estimators  φ̂, θ̂ using, for example, the 
least squares or the maximum likelihood, are calculated first 
and then the AIC and BIC criteria are calculated for these 
different couples (p,q) values And we find the minimum of 
these criteria.  

Therefore we have the values 𝑝̂ and 𝑞̂  which minimize the 
AIC or the BIC. This makes it possible to calculate the efficient 
estimators of the parameters of the ARMA(𝑝̂,𝑞̂)  model using 
the maximum likelihood method. 

D. Validation tests:Ljung-Box 

The Q(k) statistic of Ljung-Box allows to test the 
hypothesis of serial independence of a series (or that the series 
is white noise). More specifically, this statistic tests if the k 
autocorrelation coefficients are equal to zero. It is based on the 
sum of the autocorrelations of the series and is distributed 
according to a chi-squared law with k degrees of freedom. We 
can be judged the good quality of the estimate values the 
residue analysis, therefore study the ACF and PACF functions 
of the residue series ε̂𝑡, but often this study is summarized by 
carrying out the test [16]: 

𝐻0 : ε̂𝑡 Is a white noise. 

𝐻1 : ε̂𝑡 Is not a white noise. 

                        𝑄(𝑘) = 𝑛(𝑛 + 2) ∑
𝜌̂2(𝑗)

(𝑛−𝑗)

𝑘
𝑗=1 

Under 𝐻0, 𝑄(𝑘)~𝜒2(𝑘), So if 𝑄(𝑘) is small (the critical 
probability or the p-value is large i.e. greater than the 
threshold) the residuals are a white noise. 

E. Mesurement of prediction quality  

In the field of statistics, the precision prediction is the 
degree of proximity between the advertised (predicted) 
quantity and the actual (observed) quantity [17,18]. 

The statistical tools used to evaluate the performance of 
deterministic predictions are widespread and used. Recall their 
formulation: 

 Mean Absolute Error : 

                           𝑀𝐴𝐸 =
1

𝑁
∑ |𝑋𝑖 − 𝑋̂𝑖|

 𝑁
𝑖=1 

 Mean Square Error : 

                          MSE =
1

N
∑ (Xi − X̂i)

2N
i=1                          (7) 

 Root mean square error :   

                         𝑅𝑀𝑆𝐸 = √
1

N
∑ (Xi − X̂i)

2N
i=1 

 Mean Absolute Percentage Error : 

                        𝑀𝐴𝑃𝐸 =
100

𝑁
∑ |𝑋𝑖 − 𝑋̂𝑖|

 𝑁
𝑖=1                       (9) 

 

https://en.wikipedia.org/wiki/Likelihood_function
https://en.wikipedia.org/wiki/Observation
https://en.wikipedia.org/wiki/Parameter


III. DESCRIPTION, PROCESSING AND VISUALIZATION OF 

DATA 

A. Description and visualization of data 

The data base is constructed from measurements of global 

solar radiation on horizontal surface (𝑋𝑡 , t ∈ 𝕫) at the weather 
station Agdal Marrakech, the data series considered in this 
study concerns the global solar radiation measured each half 
hour from sun set to sun rise during 2014, with (t =1,..., 17520) 
but in our study we have converted the observation series in the 
form of a daily average with (t = 1, ..., 365) (Fig. 1). 

Before analyzing this series, we start by looking at its 
evolution in relation to time, sought: abrupt changes, atypical 
values and to look for an Eventual trend, Eventual seasonality 
(periodicity). 

 

 

 

 

 

 

 

 

Fig. 1. Daily global solar radiation in Agdal in 2014. 

This graph presents the daily evolution of the global solar 
radiation at Agdal during the year 2014, we note that the 
observations are not seasonal and evolve according to a 
polynomial trend as a function of time. 

IV. BOX AND JENKINS METHODOLOGY 

The various elements presented below, allow us to 
introduce and discuss the method of Box and Jenkins (1970) 
which will be very useful for modeling our time series [19]. 

The modeling steps are as follows: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. Algorithm the Box-jenkins for modeling the time series by an ARMA 

model. 

V. MODELING GLOBAL SOLAR RADIATION AT AGDAL USING 

ARMA PROCESS 

In this part we are interested to apply the modeling 
algorithm proposed by Box and Jenkins to model the global 
solar radiation. 

A. Modeling the trend component 

We estimate the polynomial trend with a well-determined 
of the order r which ensures the stationarity of the time series. 

Figure 3 shows a slow decay of the auto-correlation 
function ACF, we can say that the time series 𝑋𝑡  is not 
stationary. 

 

 

 

 

 

 

Fig. 3. Sample autocorrelation function the time series  𝑋𝑡. 

Such that the P-value of the Phillips Perron and Augmented 
Dickey-fuller test which corresponds to each autocorrelation 
coefficient is greater than 5%, thus allowing the null hypothesis 
of non-stationarity of the series  𝑋𝑡 to be accepted. 

The tables below summarize the decisions made by the 
Phillips Perron and Augmented Dickey-fuller tests: 

Where: 

H = 0: Admit the null hypothesis of non-stationarity  𝑋𝑡. 

H = 1: Reject the null hypothesis of non-stationarity  𝑋𝑡. 

 Augmented Dickey-fuller (ADF) test: 

TABLE I.  DECISIONS MADE BY THE APPLICATION OF THE AUGMENTED 

DICKEY FULLER TEST ON THE TIME SERIES. 

ADF_test 
Lag 

1 2 3 4 5 6 

P-Value 0.12 0.22 0.31 0.36 0.42 0.45 

H 0 0 0 0 0 0 

 

 Phillips Perron (Pp) test: 

TABLE II.  DECISIONS MADE BY THE APPLICATION OF THE PHILLIPS 

PERRON TEST ON THE TIME SERIES. 

Pp_test 
Lag 

1 2 3 4 5 6 

P-Value 0.08 0.12 0.17 0.20 0.23 0.25 

H 0 0 0 0 0 0 

 
For these results we estimate a polynomial tendency with a 

well–determined order which makes the time series stationary 
after removal of the trend component. 

The estimated polynomial trend is defined as follows: 

𝑇𝑟 = 𝑝1𝑥8 + 𝑝2𝑥7 + 𝑝3𝑥6 + 𝑝4𝑥5 + 𝑝5𝑥4               (10) 

                +𝑝6𝑥3 +𝑝7𝑥2 + 𝑝8𝑥 + 𝑝9 



𝑝1= 3.41 10−19, 𝑝2= -5.57 10−16, 𝑝3= 3.74 10−13 
𝑝4= -1.32 10−10, 𝑝5= 2.65 10−8, 𝑝6= -3.03 10−6, 
𝑝7 = 1.8 10−4, 𝑝8 = -3.3 10−3, 𝑝9 = 0.13. 
 

The following figure shows the series of global solar radiation, 
the trend and the series obtained after the removal of the trend:  











  

Fig. 4. Global solar radiation, the  polynomial trend and the global solar 

radiation without trend. 

The autocorrelation and the partial autocorrelation 
functions of the time-series 𝑋𝑡 after removal of the trend are 
presented in figure 5: 

 

 

 

 

 

 

 

 

 

 

Fig. 5. Autocorrelation and partial autocorrelation functions of the time 

series 𝑋𝑡 without trend. 

The figure 5 shows a rapid decay of the autocorrelation and 
partial autocorrelation function, for this reason, we conclude 
that the time series 𝑋𝑡 after removal of the trend becomes 
stationary. Such that the P-value of the Phillips Perron and 
Augmented Dickey-fuller test, which corresponds to each 
autocorrelation coefficient, is less than 5%, which makes it 
possible to admit the stationarity of the time-series 𝑋𝑡. 

To describe more the obtained results we summarize the 
decisions made by the Phillips Perron and Augmented Dickey-
fuller tests in the following tables: 

 Augmented Dickey-fuller test: 

TABLE III.  DECISIONS MADE BY THE APPLICATION OF THE AUGMENTED 

DICKEY FULLER TEST ON THE TIME SERIES WITHOUT TREND. 

ADF_test 
Lag 

1 2 3 4 5 6 

P-Value 10−3 10−3 10−3 10−3 10−3 10−3 

H 1 1 1 1 1 1 

 Phillips Perron test: 

TABLE IV.  DECISIONS MADE BY THE APPLICATION OF THE PHILLIPS 

PERRON TEST ON THE TIME SEIES WITHOUT TREND. 

Pp_test 
Lag 

1 2 3 4 5 6 

P-Value 10−3 10−3 10−3 10−3 10−3 10−3 

H 1 1 1 1 1 1 

 

B. Choice of the polynomial trend order 

We notice that there are several orders which are able to 
transform the observation time-series 𝑋𝑡  to stationary process.  
The problem is in residual series analysis that will be solved by 
studying the difference between the observation series and the 
evolution predicted series (the residual time-series) in the 
following subsection E. 

The only trend order which gives a difference between the 
measured and predicted series (described in the ensuing 
subsection E) in the form of a white noise is r = 8 and all the 
other orders give a residual series containing information (not a 
white noise). We check this by applying Ljung-Box correlation 
test, which gives information on the behavior of the residual if 
it is a white noise or not.  

The following table summarizes the prediction quality as a 
function of the order r of the polynomial trend. 

Where: 

H = 0:  assume that the residual series forms a white noise. 

H = 1:  reject the hypothesis that the residual series forms a 
white noise. 

TABLE V.  LJUNG BOX TEST AS A FUNCTION OF THE  TREND ORDER. 

Trend 

order 

Ljung 

Box 

Test 

 

Lag 

1 2 3 4 5 

7 

P_Value 0 2 10−8 6 10−8 9 10−8 4 10−7 

H 1 1 1 1 1 

8 

P_Value 0.25 0.40 0.23 0.18 0.28 

H 0 0 0 0 0 

9 

P_Value 0 10−12 10−12  3 10−12 9 10−12 

H 1 1 1 1 1 

 

From this results, we note that the order r = 8 gives a good 
results than the other orders. Furthermore our optimal trend is a 
polynomial tendency of order 8. 

C. Determination of the optimum couple (p, q) values 

We see that P_max = 1 and Q_max = 1 are observed in 
figure 5 which represent the number of a significant auto-
correlation (ACF) and partial auto correlations (PACF) 
coefficients of the series without trend component. 

With the autocorrelogram of (ACF) we can determine q and 
the partial autocorrelogram of (PACF) allows us to determine 
p. 



We try all the combinations of ARMA (p, q), P∈ {0,1} and 
Q∈ {0,1} by displaying the results to choose the best suited 
model. 

The information criteria AIC (Akaike Information 
Criterium) and BIC (Bayesien Information Criterium) are used 
to determine the couple (p, q) of the optimal model and the best 
suited model to our time-series. 

The BIC and AIC values of all possible combinations of 
ARMA(p, q) are presented in table VI: 

TABLE VI.  BIC AND AIC VALUES OF ALL POSSIBLE COMBINATIONS OF 

ARIMA (P, Q). 

Criteria 
ARMA(p,q) 

ARMA(0,0) ARMA(0,1) ARMA(1,0) ARMA(1,1) 

BIC −1.282 103 −1.318 103 −1.317 103 −1.313 103 

AIC −1.294 103 −1.3338 103 −1.332 103 −1.3331 103 

 

The best value given by the BIC and AIC information 
criteria is the smallest value, in our case we have:  

BIC = −1.318 103 and AIC = −1.3338 103. 

For this reason, the optimal process for modeling our time 
series is corresponding to the process ARMA(0,1) or MA(1) 
Because that which minimizes the criteria of information. 

D. Estimation of the coefficients of the obtained model 

After the recognition of the pair (p, q) of processes 
ARMA(p,q) which is MA(1), the coefficient is estimated using 
the likelihood method. 

The developed model which models the series without 
trend component 𝑋𝑑𝑡  is defined as follows: 

𝑋𝑑𝑡 =  −9.68 10−17 +  ε𝑡 − 8.25 10−3 ε𝑡−1   

Where ε𝑡 ∼BB(0, σ2), with σ2= 1. 

Variance 𝑉𝑎𝑟[𝑋𝑑𝑡] = 2 10−7. 

The evolution of the series without trend component and its 
fitting by this model is as follows: 

 

 

 

 

 

 

 

Fig. 6.  The series without trend and theirs predicted values by the model 
MA (1). 

The graph shows that there is no difference between the 
two time-series which permets to conclude that the model fit 
well the series observation without trend component. 

Now we add the trend component to the obtained model 
MA (1) to define the global model that describes our original 
time-series 𝑋𝑡  of global solar radiation. 

The global model becomes: 

𝑋𝑡 =  𝑋𝑑𝑡 + Tr  Where ε𝑡 ∼BB(0, σ2), with σ2= 1. 

The global solar radiation series 𝑋𝑡 and its fit series using 
the global model are presented in the following figure: 

 

 

 

 

 

 

 

 

 

 

Fig. 7. Global solar radiation and the predicted values by the global model 

obtained. 

From the figure, we notice a good agreement of the 
measured time series and the predicted time series with the 
developed model. 

E. Study of residuals: 

To validate the model, we must to study the residual time-
series. The following figure, shows the patterns of the residuals 
values calculated as the difference between measured values 
and those predicted by the global model. 

 

 

 

 

 

 

Fig. 8. Evolution of the residual time-series. 

We plot the ACF and the PACF to verify that we don’t 
have a significant autocorrelation and a partial autocorrelation 
coefficients and also to assert the stationarity of the residuals. 
The Ljung-Box statistic is applied to know if the residuals 
values describe a white noise or not. The following figure 
shows the autocorrelograms of ACF and PACF of the residuals 
series. 

 

 

 

 

 

 

 

 

 

 

Fig. 9. Autocorrelograms of ACF and PACF of residual time series. 



The decisions taken by applying the Ljung-Box statistics 
test are grouped in table VII: 

TABLE VII.  DECISIONS TAKEN BY THE APPLICATION OF THE LJUNG-BOX 

STATISTICS TEST. 

Ljung-Box 

test 

Lag 

1 2 3 4 5 6 

P-Value 0.25 0.40 0.23 0.18 0.28 0.31 

H 0 0 0 0 0 0 

 

From the graphs of the autocorrelation function ACF and 
the partial autocorrelation function PACF of the residuals 
series; we can affirm that the residuals are stationary because 
all the values of the ACF and PACF are contained in the blue 
band. This would mean that at the 5% threshold the residual 
time series is stationary. In addition all the p-values of the 
Ljung-Box statistics are greater than 5%; which allows us to 
conclude that the residual time series is a white noise of 
variance σε

2 = 2.01 10−7; hence the validation of this model is 
achieved. 

F. Measurement of Prediction Quality  

The following table summarizes the values given by the 
comparison indicators between the measured time-series and 
predicted time series. 

TABLE VIII.  QUALITY OF MEASUREMENT. 

 Comparison 

  indicators 

Indicators 

MSE RMSE MAE MAPE 

Value 7.17 10−6 2.67 10−3 2.35 10−3 0.23 % 

 

The comparison indicators values show that this model is 
efficient. 

 

 

 

 

 

 

 

 

Fig. 10. Linear correlation coefficient to describe the approximation of the 
predicted values and the observed values. 

The following figure shows the concentrations of the time 
series of measured and predicted values. The linear correlation 
coefficient describing the approximation of the output 
(predicted value) and the target (observed value) is R = 
0.99942. The value of this coefficient shows that this model is 
efficient and can be used for modeling purpose with a good 
accuracy.  

VI. CONCLUSION 

In this paper, we used statistical methods to model solar 
radiation using ARMA processes. To rich our goal, we applied 

the Box-Jenkins strategy. The simulations carried out in this 
work are concentrated on the study of the prediction 
performance, for this we used some statistical criteria namely: 
MSE, RMSE, MAE, MAPE to compare the predicted values 
and the observed values of global solar radiation time-series. 
Finally, we asserted that the most adequate model for modeling 
our time series is a process MA(1) added to a polynomial 
tendency of order r = 8. 
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