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Abstract— This paper proposes a technique in Empirical Mode 

Decomposition (EMD) domain to enhance the signal. The noisy 

signal is decomposed, by EMD, into approximation and detail 

which are filtered separately using spectral subtraction and 

Wiener filter. Therefore, the main idea of the proposed approach 

is to filter the shorter scale IMF (detail) by Wiener filter, which 

are noise dominated, and filter the approximation using spectral 

subtraction technique. In fact, the filtering of the approximation 

by the same filter (Wiener) will introduce signal distortion rather 

than a noise reduction. Thus, the performance of this method is 

to construct linearly the original signal without loss of the useful 

information. The study is limited to signals corrupted by additive 

white Gaussian noise. 
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I. INTRODUCTION 

      Speech signal noise reduction is a well known problem 
in signal processing.  Particularly, in  the  case  of  additive  
white Gaussian  noise  a  number  of  filtering  methods  has  
been proposed[1]-[2]. However, these methods are not 
effective when the noise estimation is not possible. To 
overcome these difficulties, nonlinear methods have been 
proposed and especially those based on Wavelets thresholding 
[2]-[3]. The idea  of  wavelet  thresholding  relies  on  the  
assumption  that signal magnitudes dominate the magnitudes 
of the noise in a wavelet representation, so that wavelet 
coefficients can be set to  zero  if  their  magnitudes  are  less  
than  a  pre-determined threshold [3]. A limit of the wavelet 
approach is that the basis functions are fixed, and thus do not 
necessarily match all real signals.  

Recently, a new temporal signal decomposition method, 
called Empirical Mode Decomposition (EMD), has been 
introduced by Huang et al. [4] for analysing data from non 
stationary and nonlinear processes. The major advantage of 
the EMD is that the basis functions are derived from the signal 
itself. Hence, the analysis is adaptive in contrast to the 
traditional methods where the basis functions are fixed. In our 

previous works [5]-[6], the denoising method is based on the 
filtering  of  all  IMFs  extracted  from  the  noisy  signal  by  
the same  filter. However,  the  longer  scale  IMFs  (low-  and 
medium-frequency  components)  corresponding  to  the  most 
important  structures  of  the  signal  is  signal  dominated.  
Therefore, filtering of these IMFs will introduce signal 
distortion   rather than a noise reduction [7]. The basic idea of 
the proposed method is to filter the shorter scale IMF (detail) 
by Wiener filter, which are noise dominated, and filter the 
approximation using spectral subtraction technique. In fact the 
filtering of all IMFs by the Wiener filter generates a distortion 
of the signal, i.e. the filtering eliminates even the useful 
information. While the filtering of all IMFs by the spectral 
subtraction filter does not make it possible to effectively 
eliminate all the noise.  

The paper is organized as follows. Section II explains the 
basics of the EMD and Section III exposed the proposed 
method. Results are presented in Section IV, and conclusions 
are drawn in Section V. 

II. EMD BASICS 

        The EMD decomposes a signal f(t) into a series of IMFs 
through an iterative process called sifting; each one, with 
distinct time scale [8]. The decomposition is based on the 
local time scale of f(t) and yields adaptive basis functions. The 
EMD can be seen as a type of wavelet decomposition whose 
subbands are built up as needed to separate the different 
components of f(t). Each IMF replaces the signals detail, at a 
certain scale or frequency band [9]. The EMD picks out the 
highest-frequency oscillation that remains in f(t). By 
definition, an IMF satisfies two conditions: 
 

• the number of extrema and the number of zero crossings 
may differ by no more than one; 

 

• the average value of the envelope defined by the local 
maxima and the envelope defined by the local 
minima is zero. 
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      Thus, locally, each IMF contains lower-frequency 
oscillations than the just-extracted one. To be successfully 
decomposed into IMFs, f(t) must have at least two extrema; 
one mini-mum and one maximum. The sifting involves the 
following steps: 
 
Step 1: fix the threshold � and set j ← 1 ( jth IMF); 
Step 2:  ����(t) ← f(t) (residual); 

Step 3: extract the jth IMF: 
 

(a) ℎ�,���(t) ←  ����(t), i ← 1  (i number of sifts). 

(b) extract local maxima/minima of 	ℎ�,���(t). 

(c) compute upper and lower envelopes 
�,���(t) and 

��,���(t) by interpolating,  using cubic spline, 

respectively, local maxima and minima of ℎ�,���(t), 

 
(d) compute the mean of the envelopes : 

 

     µ�,���(t) =    ( 
�,���(t)+ ��,���(t))/2 

 

(e) update:	h
,�(t) ←h
,���(t) -	µ�,���(t), i ← i + 1, 

(f) calculate the stopping criterion : 
 

(g)repeat steps (b)-(f) until  SD(i)< � and then put 
IMF
(t)←h
,�(t) ( jth IMF). 

  Step 4: update residual :  ��(t):= ����(t)- ����(�); 
  Step 5:  Repeat step 3 with j := j+1 until the number of 

extrema in ��(t) is ≤ 2; 

where T is f(t) time duration. The sifting is repeated several 
times (i) in order to get h true IMF that fulfils the two first 
conditions. The result of the sifting is that f(t) will be 
decomposed into a sum of C IMFs and a residual r�(t) such 
that 
 

 
                       (1) 

 
 

                                      

  
C value is determined automatically using SD (Step 3(f)). The 
sifting has two effects: (a) it eliminates riding waves and (b) 
to smoothen uneven amplitudes. To guarantee that IMF 
components retain enough physical sense of both amplitude 
and frequency modulation, we have to determine SD value for 
the sifting. This is accomplished by limiting the size of the 
standard deviation SD computed from the two consecutive 
sifting results. Usually, SD (or  ) is set between 0.2 to 0.3 [8]. 

 
 

III. THE  PROPOSED METHOD 

The proposed approach denoising is illustrated by Fig. 1. 
The  EMD  breaks  in  first  step  the  noisy  signal  into  low 
frequency components known as the approximation and high 
frequency components known as the detail (IMF).  

The approximation is filtered using the spectral subtraction 
which suppresses the stationary noise components. The detail 
is filtered using the Wiener filter which is employed to reduce 
the real background noise. Then, the denoised signal 
reconstructed by sum the filtered detail and approximation 
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Fig. 1. The proposed approach denoising scheme 

 

A. Wiener filter 

Let a clean speech signal s(t) be corrupted by an 
additive white Gaussian noise w(t) as follows: 

 

x(t) =  s(t) +  w(t) (2) 
 
        Wiener filter is simple, easy to implement and to 
design[1]. Also, it’s an optimal filter that minimizes the Mean 
Squared Error (MSE) criterion [10]. In (2), The filter defined 
by: 

 
S(ω) = H(ω) X(ω) 

 
(3) 

     where ω denote the frequency index, S(ω),X(ω), and H(ω) 
are the discrete Fourier transform of the clean speech, the 
transform of noisy speech and transfer function of Wiener 
filter, respectively. The MSE can be defined as follows. Also, 
The Wiener filter can be derived by: 
 

H(ω) = !""(ω)
!""(ω) + P$$(ω) 

 (4) 

     
    where !""(ω)and  !%%(ω) denote power spectrum of speech, 
s(t) and that for noise, w(t), respectively. 

In the case of (3) and (4), the enhanced speech is estimated 
in the frequency domain by: 

 

H(ω) = !""(ω)
!""(ω) + P$$(ω) X(ω) 

 (5) 

 

B. Spectral Subtraction 

		SD(i) =*+h
,���(t) − h
(t)+-
(h
,���(t))-

.

/01
 

 

		f(t) = *				����(�) +	
3

�0�
�4(�) 

 

estimated signal 

+ 



      Spectral Subtraction method is one of the important 
speech enhancement methods, due to its relative simplicity 
and ease  of implementation.   Let x (t) a noisy speech signal: 
 

x(t) = s(t) + w(t) 
 

(6) 

      where s(t) is the clean signal and w(t) is the white 
Gaussian noise. The basic principle of spectral subtraction is 
to restore the power spectrum on an observed signal corrupted 
with additive noise, through subtraction of an estimate of 
noise spectrum from the noisy signal spectrum. The noisy 
spectrum is estimated from the periods of silence when the 
signal is absent and only the noise is present [11]. The 
equation describing Spectral Subtraction can be defined by: 

 

+S5(ω)+- = |X(ω)|- − P7$(ω) 	8 |X(ω)|- 91 + 1
SNR=

��
 

 

 
(7) 

 

    where ω denote the frequency index, S(ω) and X(ω) and 

P7$(ω) are the discrete Fourier transform of the clean speech, 

the transform  of noisy speech, and the estimate of the power 
spectrum of  noise, respectively. Finally in this case, the 
SNR defined : 

SNR = 
|>(?)|@
A7B(?)   

(8) 

 

C. Noise estimation 

Extensive simulations have shown that when a speech 
signal with a silence sequence is decomposed by EMD, its 
first IMF corresponds to that silence sequence. Thus, the first 
IMF can be used to correctly estimate the noise level [5]. 
Generally, speech noise estimation is performed using the 
Boll’s method. Accordingly, the silence periods of the signal 
are detected, and then power spectra noise estimation is 
performed by considering the average of the power spectra 
of the noisy signal on the M first temporal frames which are 
considered as being moments of silence, following the 
relation 
 

+W7 (fe,m)+- = 	 1
M
	*|W(fe, i)|-
F��

�01
 

 
(9) 

    where |W(fe, i)| is power spectra value at the discrete 
frequency fe of frame i. This method gives a correct 
estimation of the noise.  

IV. RESULTS 

     The proposed approach is applied to two clean speech 
signals "speech1" and "speech2" corrupted by additive white 
Gaussian noise with input SNR values ranging from -10 dB 
to 10dB. The original signals and the noisy versions 
corresponding to input SNR=-2 dB are shown in Fig .2. 

 The results are compared to the Wiener filter denoising 
technique and to the spectral subtraction technique. Where the 
Wiener  filter  denoising  technique  consists  on  filtering  the 
noisy  speech by Wiener  filter,  and  the  spectral subtraction 
technique consists on  filtering  the  noisy  speech  by Spectral 
subtraction. The output SNR and Perceptual Evaluation of 
Speech Quality (PESQ) [12] are used as an objective measure 
to evaluate the denoising methods. More precisely, the PESQ 
criterion measures the perceptual quality of speech signal.  

 Fig.3,4 and 5 shows the denoising results obtained by the  
proposed  method,  the  Wiener  filter    and  the  spectral 
subtraction technique. From these  figures,  one  can  conclude 
that the proposed approach performs better (noise reduction) 
than  Wiener  filter  and  Spectral  subtraction  technique 
compared to the original signals (Fig.2).  

 This fact is confirmed by the results shown in Fig. 6 and 7, 
where more SNR gain is obtained by the proposed approach 
compared to the Wiener and spectral subtraction. For each 
input SNR value, 100 independent noise simulations are 
generated and the average of output SNR and the PESQ 
values are calculated. One may note that the proposed 
approach provides an improvement about 1 dB compared to 
the standard Wiener filter and spectral subtraction technique 
for the noisy versions of all signals "speech1" and "speech2".  

 The obtained results also show that it is more efficient to 
apply the Wiener filter for detail signal and the spectral 
subtraction for approximation signal than to the signal itself. 
These results are also demonstrated by Fig.8 and Fig.9, where 
the PESQ values obtained from the proposed approach are 
better than those corresponding to Wiener filter and spectral 
subtraction technique. 

 

Fig.  2. The original and noisy version (input SNR=-2db) of signals "speech1” 
and “speech2” 



 

Fig.  3. Denoising results of signals "speech1" and “speech2” by the proposed 
method 

 
Fig. 4. Denoising results of signals “speech1” and “speech2” by the Wiener 

filter 

 
Fig. 5. Denoising results of signals "speech1" and "speech2” by the 

Spectral subtraction 

 

 

Fig. 6.  Final SNR values obtained from different initial noise levels of 
signal “speech1”. The results are averages over 100 instances of the noisy 
signals. They are reported for proposed method, Wiener filter and spectral 

subtraction. 

 

 
Fig.  7. Final SNR values obtained from different initial noise levels of signal 
"speech2". The results are averages over 100 instances of the noisy signals. 

They are reported for proposed method, Wiener filter and spectral subtraction. 
 

 

Fig. 8. PESQ values obtained from different initial noise levels of signal 
"speech1". The results are averages over 100 instances of the noisy signals. 

They are reported for proposed method, Wiener filter and spectral subtraction. 



 
Fig.  9. PESQ values obtained from different initial noise levels of signal 

"speech2". The results are averages over 100 instances of the noisy signals. 
They are reported for proposed method, Wiener filter and spectral subtraction. 

V. CONCLUSIONS 

In this paper, a new speech enhancement method is 
presented. To lower the noise level, two effective and 
powerful methods, Wiener filtering for the detail and  
spectral subtraction filtering for the approximation, are 
combined. Obtained results for denoising speech signals 
with different SNR values ranging from −10 dB to 10 dB 
show that the SNR improvement achieved by the proposed 
method is higher than those achieved by the Wiener filter 
and the spectral subtraction method. In addition, the PESQ 
criterion confirms that the proposed method offers a much 
better listening quality than the other methods. To confirm 
the obtained results and the effectiveness of the EMD-
denoising approach, the scheme must be evaluated with large 
class of speech signals and in different experimental 
conditions such as sampling rates, sample sizes, 

multiplicative noise, or the type of  noise. 
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