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Abstract—This paper presents the attitude control system de-
sign of multi-rotor aerial vehicle based on Adaptive Generalized
Dynamic Inversion (AGDI). The two-loop structured control
system is proposed, in which the outer loop utilizes Proportional
Derivative control to provide the reference pitch and roll attitude
commands to the inner loop, while controlling the desired
altitude. For the inner loop attitude dynamics, the conventional
Generalized Dynamic Inversion (GDI) control is constructed
by prescribing the linear time varying constraint differential
equation, based on the attitude deviation function and is inverted
by utilizing Moore-Penrose Generalized Inverse to realize the
control law. The null control is designed in the auxiliary part of
GDI, to provide asymptotic stability of body rate dynamics. The
singularity issue of GDI is addressed tactfully by incorporating
a dynamic scale factor. Sliding Mode based robust term with
adaptive modulation gain is integrated with GDI to make it
AGDI, that guarantees semi-global practically stable attitude
tracking. Numerical simulations are conducted on Quadrotor
simulator to demonstrate the controller’s performance.

NOMENCLATURE

ω Angular speed, rad/sec
b Lift coefficient
τ Torque, N-m
d Moment arm, m
k Drag coefficient
φ θ ψ Euler roll, pitch, yaw attitudes, deg
m Mass, kg
g Acceleration due to gravity, m/sec2

p, q, rBody angular velocities, rad/sec

Subscript
d Desired values

I. INTRODUCTION

Quadrotors belongs to a certain class of Unmanned Aerial
Vehicles (UAVs) that is evolving as a popular research plat-
form in the control community because of the simplicity of its
design and low maintenance and operation cost. It delivers the
UAVs with skills such as hovering and vertical take-off and
landing. They have sufficient payload capability and flight time
to support a various of indoor and outdoor applications, see
[1].

The multi-rotor vehicles set new challenges for the en-
gineers to design its control system [2]. In linear control

algorithms, Proportional Integral Derivative (PID) and Linear
Quadratic Regulator (LQR) [3], are very popular, however
their performance might be degrade due to nonlinear behaviour
of multi-rotor vehicles over wide range of operation. To cope
with, many nonlinear control techniques are developed such
as Back Stepping Control [4], Sliding Mode Control (SMC)
[5], Fuzzy Logic Control [6], Model Predictive Control [7],
Nonlinear Dynamic Inversion (NDI) [8], [9], etc.

In contrast to NDI, a new methodology that is based on
inversion principle is Generalized Dynamic Inversion (GDI)
control. This approach based on inverting a prescribed set of
constraint dynamics that includes the control objectives, and
are inverted using Moore-Penrose Generalized Inverse (MPGI)
based Greville method. This will mitigate the presumptions
taken in NDI for acquiring the inverse of the whole system.
This control technique has been applied to several aerospace
engineering and robotics applications see, [10], [11], [12],
[13], [14], [15], [16], [17], [18], [19].

In this paper, a two-loop structured control system is
proposed for autonomous operation of Quadrotor. In outer
(position) loop, Proportional Derivative (PD) control is em-
ployed, which generates the desired pitch and roll attitude
commands for the inner loop, to minimize longitudinal and
lateral positional errors along with tracking the required alti-
tude. In the inner loop, GDI is employed in which dynamic
constraints are defined based on the attitude deviation function
that encapsulates the control objectives, and are inverted by
using MPGI based Greville formula. The singularity problem
due to non-square inversion is addressed by augmenting a
dynamic scale factor in MPGI. The body rate dynamics
are stabilized by using Lyapunov based null control vector.
Because dynamic inversion scaling deteriorates inner loop
performance, a robust term based on SMC with adaptive
modulation gain, is integrated with GDI to make it Adaptive
Generalized Dynamic Inversion (AGDI). The proposed control
guarantees uniformly ultimately bounded attitude trajectory
tracking errors and semi-global practically stable attitude
tracking. For performance evaluation, numerical simulations
are conducted on 6 Degrees of Freedom (DOFs) simulator
of X4-flyer Quadrotor in both nominal and perturbed flight
conditions.

The remaining part of the paper is organized as follows. The
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modeling of the Quadrotor is presented in section II. The two-
loop control architecture is explained in section III. The design
of PD control for the outer position loop is discussed in section
IV. The basic formulation of GDI attitude control system is
shown in section V. The detailed design process of AGDI
control is presented in section VI, which guarantees semi-
global practically stable attitude tracking. Finally, simulation
results and conclusion are presented in section VII, and VIII
respectively.

II. QUADROTOR MATHEMATICAL MODELING

For mathematical modeling two reference frames are used.
The body fixed frame is represented by B(xb, yb, zb) and
inertial Earth-fixed reference frame is denoted by E(xe, ye, ze)
as shown in Fig. 1. The thrust force produced by the individual
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Fig. 1: Quadrotor configuration

rotor in the upward direction is written as

Ti = bω2
i
, i = 1, 2, 3, 4 (1)

The total thrust is given by

T =

4∑
i=1

Ti (2)

The torques generated along xb axis, the yb axis, and the zb
axis are written as

τx = db(ω2
4 − ω2

2) (3)
τy = db(ω2

3 − ω2
1) (4)

τz = k(ω2
1 − ω2

2 + ω2
3 − ω2

4) (5)

The relation between input and output vector of Quadrotor is
given as

u = W
[
ω2

1 ω2
2 ω2

3 ω2
4

]T
(6)

where u =
[
T τx τy τz

]T
, and W is full rank matrix,

see [2]. The translational dynamics is modeled by Newtons
equations of motion which yieldsẍeÿe

z̈e

 =

0
0
g

− LEB

 0
0
T
m

 (7)

where LEB is the transformation matrix from B to E [20].

The angular velocity vector of Quadrotor in frame B with
respect to E is denoted by Ω and express in B as

Ω =
[
p q r

]T
(8)

Then the Quadrotor’s rotational kinematics is given by the
relation between the time rates of Euler’s angles and the body
components of Ω as [20]φ̇θ̇

ψ̇

 =

1 sφtθ cφtθ
0 cφ −sφ
0 sφ/cθ cφ/cθ

pq
r

 (9)

where tθ stands for tan θ. In compact form, (9) is written as

ϑ̇ = Γ(φ, θ)Ω (10)

The angular momentum vector of the Quadrotor about its
CG is H = JΩ, where J = diag

[
Jx, Jy, Jz

]
is the

constant 3×3 diagonal body inertia matrix. The time derivative
of H relative to E is given by the basic kinematical equation
[21] as

EdH

dt
=

BdH

dt
+ Ω×H = JΩ̇ + Ω×JΩ (11)

where Ω× is the skew symmetric matrix [1]. The rotational
dynamics is modeled by Euler’s equations of motion as

EdH

dt
= τ (12)

where τ =
[
τx τy τz

]T
. Substituting (11) in (12) and solving

for Ω̇ yields the following rotational dynamical equations of
motion in B

Ω̇ = −J−1Ω×JΩ + J−1τ (13)

To have control input in (10), its derivative has been taken
which yields

ϑ̈ = Γ̇(φ, θ, φ̇, θ̇)Ω + Γ(φ, θ)Ω̇ (14)

where Γ̇(φ, θ, φ̇, θ̇) is the time derivative of Γ(φ, θ). By
solving (10), (13) and (14), we get

ϑ̈ = F + Gτ (15)

where

F = Γ̇Γ−1ϑ̇+ Γ{−J−1(Γ−1ϑ̇)XJΓ−1ϑ̇}, (16)

G = ΓJ−1 (17)

III. CONTROLLER ARCHITECTURE

The two-loop structured control system is proposed hav-
ing slow (outer) loop and fast (inner) loop as shown in
Fig. 2. The outer loop contains the positional state vector
xo =

[
xe ye ze

]T
, while the inner loop contains attitude

state vector xa =
[
φ θ ψ

]T
and body rate state vector

xr =
[
p q r

]T
. In outer loop, PD control is designed,

which generates the desired pitch and roll attitude commands
based on longitudinal and lateral positional errors along with
generating the required thrust to achieve the desired altitude.
In the inner loop, AGDI control is implemented to follow the
desired roll, pitch (generated by outer loop) and yaw attitude
profiles, while stabilizing the angular body rates.
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Fig. 2: Control architecture

IV. PD CONTROL FOR OUTER POSITION LOOP

To acquire the desired positions in xe and ye axis, the PD
control is designed as

(ẍe − ẍed) + c1(ẋe − ẋed) + c2(xe − xed) = 0 (18)

(ÿe − ÿed) + c3(ẏe − ẏed) + c4(ye − yed) = 0 (19)

To generate θd and φd, the desired nonlinear dynamics of
position xe and ye is linearized about the instantaneous values
of θ and φ which yields[
ẍed
ÿed

]
= −

[
sψs(φ+∆φ) + cψs(θ+∆θ)c(φ+∆φ)

−cψs(φ+∆φ) + sψs(θ+∆θ)c(φ+∆φ)

]
T

m
(20)

where ∆θ and ∆φ are the attitude corrections in order to attain
the desired position coordinates. By expanding the trigonomet-
ric functions of θ and φ about the instantaneous values of θ(t)
and φ(t), yields the following linear approximate expressions[

ẍed
ÿed

]
= M

[
∆θ
∆φ

]
+ N (21)

where

M =
T

m

[
cψcφ + sψsθsφ −sψcθcφ
−sψcφ + cψsθsφ −cψcθcφ

]
, (22)

N =
T

m

[
cψsφ − sψsθsφ
−sψsφ − cψsθcφ

]
(23)

To extract ∆θ and ∆φ, substitute (21) in (18) and (19),
resulting in

∆θ =
m

T


(ẍe −N) + c1(ẋe − ẋed)

+c2(xe − xed) + sψcφcψ∆φ

cψcφ + sψsθsφ

 (24)

∆φ =
m

T


(ÿe −N) + c3(ẏe − ẏed) + c4(ye − yed)

−(sψcφ + cψsθsφ)∆θ

cψcφ + sψsθsφ


(25)

Finally the expressions for θd and φd are calculated by θd =
θ(t) + ∆θ and φd = φ(t) + ∆φ. Similarly to attain desired
altitude, the PD control is defined as,

(z̈e − z̈ed) + c5(że − żed) + c6(ze − zed) = 0 (26)

where
z̈e = −g +

T cos θ cosφ

m
(27)

The required thrust T is evaluated by solving (26) and (27),
resulting in

T = − m

cos θ cosφ
[z̈ed+g−c5(że− żed)−c6(ze−zed)] (28)

V. GDI CONTROL FOR INNER ATTITUDE LOOP

To construct GDI, the expressions given by (13) and (15)
are rewritten as

ẋr = Ar(xr, t) + Brτ (29)

ẍa = F + Gτ (30)

where Ar = −J−1Ω×JΩ and Br = J−1. The weighted error
norm of the attitude state deviation function is defined as

χ = ‖ea‖2w = κ1(φ− φd)2 + κ2(θ − θd)2 + κ3(ψ − ψd)2

= κ1e
2
φ + κ2e

2
θ + κ1e

2
ψ (31)

where k1,2,3, are positive constants. The linear time varying
constraint differential equation is formulated, the differential
order of which is the same as the relative degree of the
deviation function. The equation takes the following form

χ̈+ a1(t)χ̇+ a2(t)χ = 0 (32)

where a1 and a2 are chosen such that the constraint dynamics
is uniformly asymptotically stable. The time derivatives for
constraint dynamics are computed as

χ̇ = 2eTaDėa (33)

χ̈ = 2eTaD[F + Gτ − ẍed] + 2ėTaDėa (34)

where D represents the 3×3 diagnonal matrix with κ1, κ2, κ3

are its diagonal elements. By placing the time derivatives in
(32), the algebraic form is written as

A(xa,xr, t)τ = B(xa,xr, t) (35)

where,
A(xa,xr, t) = 2eTaDG, (36)

B(xa,xr, t) = −2ėTaDėa − 2a1e
T
aDėa − a2e

T
aDea

−2eTaDF + 2eTaDẍed (37)

Equation (35) is an under-determined algebraic system
having infinite number of solutions. These solutions are param-
eterized by generalized inversion using the Greville formula,
which yields

τ = A+(xa,xr, t)B(xa,xr, t) + P(xa,xr, t)ζ (38)

where A+ is the MPGI, ζ ∈ R3 is null control vector, and P
is the null projection matrix given by

P(xa,xr, t) = I3×3 −A+(xa,xr, t)A(xa,xr, t) (39)

However, during generalized inversion, singularity problem
arises when the inverted matrix tends to change its rank,



which causes discontinuity in the MPGI matrix function, and
causes the elements of the MPGI matrix to go unbounded. In
this paper, the Extended Generalized Dynamic Inverse method
[19], is utilized to tackle the problem of GDI singularity.

A. Singularity avoidance

To avoid singularity, a first order dynamic scaling factor is
augmented in MPGI [11], resulting in

ν̇(t) = −ν(t) +
γ ‖er(t)‖2

‖ea(t)‖2
, ν(0) > 0 (40)

where γ is a positive real valued constant and er =[
p− pd(t) q − qd(t) r − rd(t)

]T
. Now the modified general-

ized inverse A∗(xa,xr, ν, t) is written as

A∗(xa,xr, ν, t) = AT (xa,xr, t)
{
A(xa,xr, t)

AT (xa,xr, t) + ν(t)
}−1

(41)

The amended form of GDI control expression is given as

τ ∗ = A∗(xa,xr, ν, t)B(xa,xr, t) + P(xa,xr, t)ζ (42)

The detailed proof of the elements of A∗ are bounded for all
t > 0 is found in [11].

B. Null control vector design

The null control vector ζ is designed to assure global closed-
loop stability of the body rate dynamics, which is defined as

Pζ = −
(
P̄Br

)−1
P
(
P̄∆i + 0.5Ṗer + 0.5Qer

)
(43)

By placing the value of ζ in (42), the control law takes the
following form

τ ∗ = A∗B − (P̄Br)
−1P

(
P̄∆i + 0.5Ṗer + 0.5Qer

)
(44)

Theorem 5.1: The control law given by (44) guarantees
global closed-loop stability of the body rate dynamics.

Proof: Let the null control vector ζ is designed to be a
linear function of body rate error vector, defined as

ζ = Ker = K(xr − xrd) (45)

The error dynamics of inner state vector is obtained by
subtracting ẋr from ẋrd(t), which yields

ėr = Ar (xr, t)−Ar (xrd, t) + Br{A∗(xa,xr, ν, t)
B(xa,xr, t) + P(xa,xr, t)Ker}
−Br{A∗(xa,xrd, t)B(xa,xrd, t)} (46)

The error dynamics given by (46) is written compactly as

ėr = ∆r (xa,xr,xrd) + BrP(xa,xr, t)Ker (47)

Now consider the control Lyapunov function

V (xa,xr, t) = er
T P̄(xa,xr, t)er (48)

where the matrix P̄(xa,xr, t) = P + εI3×3 is symmetric
positive definite, in which ε is an arbitrary positive real scalar.
The derivative of the Lyapunov function is given as

V̇ = er
T (2P̄∆r + 2P̄BrPKer + Ṗer) (49)

For asymptotic stability, the condition V̇ <0 ∀ er 6= 0 must be
satisfied. This can be assured by the existence of symmetric
positive definite matrix Q such that

V̇ = −er
TQer < 0 (50)

Equating (49) with (50) yields(
2P̄∆r + 2P̄BrPKer + Ṗer + Qer

)
= 0 (51)

The value of the projected gain PKer is solved for from (51)
as

Pζ = −
(
P̄Br

)−1
P
(
P̄∆r + 0.5Ṗer + 0.5Qer

)
(52)

The null control vector given by (52) guarantees the asymp-
totic stability of body rate dynamics.

VI. DESIGN OF AGDI CONTROL SYSTEM

In this paper, an adaptive form of GDI control law is
formulated by the augmentation of SMC based robust term,
resulting in

τ ∗ = A∗B + Pζ − CA∗ s

‖s‖
(53)

where C denotes the adaptive modulation gain to enforce
sliding, defined as

C = ‖ueq‖Ĉ + η (54)

where ‖ueq‖ = A∗B+Pζ and η is a constant, which ensures
the reaching condition. The positive adaptation gain Ĉ evolves
according to

˙̂
C = −g1Ĉ + g2ε0‖ueq‖‖s‖ (55)

where g1, g2 and ε0 are constant positive scalar gains and s
is the sliding surface defined as

s = χ̇+ a1(t)χ+ a2(t)

∫
χdt (56)

The time derivative of the sliding surface s is given as

ṡ = χ̈+ a1(t)χ̇+ a2(t)χ (57)

By solving (57) we have

ṡ = A(xa,xr, t)τ
∗ −B(xa,xr, t) (58)

A. Stability analysis of AGDI control

To prove the stability of AGDI control law, the value of τ ∗

expressed by (53) is placed in (58), which yields

ṡ = A
{
A∗B + Pζ − CA∗ s

‖s‖
}
−B (59)

Furthermore, place the expression of null projection matrix P
given by (39), and evoking the property of pseudo inverse, i.e.
AA+ = 1, for all A(xa,xr, t) 6= 01×3, the expression of ṡ
given by (59) curtails to

ṡ = {ρA(xa,xr, ν, t)− 1}B − CρA(xa,xr, ν, t)
s

‖s‖
(60)



where ρA = A(xa,xr, t)A∗(xa,xr, ν, t). However the iden-
tityAA+ = 1 does not hold true for ρA. Nevertheless, because
ν ∈ (0,∞), it follows from the definition of A∗(xa,xr, ν, t)
given by (41) that

0 < ρA(xa,xr, ν, t) < 1 (61)

for all A(xa,xr, t) 6= 01×3 and that

lim
t→∞

ρA(xa,xr, ν, t) = 0 ⇔ lim
t→∞

A(xa,xr, t) = 01×3 (62)

The following positive definite candidate Lyapunov function

V =
1

2
s2

will be employed to design the adaptive sliding gain C. The
time derivative of the Lyapunov function is evaluated as

V̇ = sṡ = s{ρA − 1}B − CsρA
s

‖s‖
(63)

Therefore, a function C(xa,xr, ν, t) that ensures

C(xa,xr, ν, t) = ‖ueq‖Ĉ + η >
ρA − 1

ρA
B

s

‖s‖
(64)

would guarantee the negative definiteness of V̇ , which will as-
sure the finite time stability of s = 0 follows from Lyapunov’s
direct method [22]. This will also ensures finite time stability
of ea = 03×1 as obvious from the definition of s given by
(56). Hence, it follows from the definition of A(xa,xr, t)
given by (36) along with the condition given by (62) that
ρA(xa,xr, ν, t) must also converge to zero. Therefore,

lim
er→03×1

ρA(xa,xr, ν, t)− 1

ρA(xa,xr, ν, t)
= −∞ (65)

which requires the function C(xa,xr, ν, t) or η to reach
infinite values as er vanishes in order to guarantee V̇ < 0
and s = 0. Therefore it is not possible to guarantee the finite
time closed-loop stability of sliding mode dynamics given by
(60), however it is feasible to achieve the semi-global practical
stability of the GDI sliding mode dynamics via SMC gain
design.

Theorem 6.1: There exists a real number η∗ > 0 for
every real number ρ∗A ∈ (0, 1) which ensures the negative
definiteness of V̇ along the solution trajectories of the sliding
mode dynamics given by (60) for all ρA(xa,xr, ν, t) > ρ∗A
and η > η∗.

Proof: Let ρ∗A be a prescribed constant real scalar in
the range of ρA(xa,xr, ν, t), i.e., ρ∗A ∈ (0, 1). Also, define
η̄(xa,xr, t) as

η̄(xa,xr, t) = −ρ
∗
A − 1

ρ∗A
|B(xa,xr, t)| (66)

It follows that η̄(xa,xr, t) > η(xa,xr, ν, t) whenever
ρA(xa,xr, ν, t) > ρ∗A. Accordingly, let D be a neighborhood
of (ea, er) = (03,03), and choose a sliding gain constant η∗

such that
η∗ > maxDη̄(xa,xr, t) (67)

TABLE I: X-4 Flyer Quadrotor specifications

Parameters Description Value
m mass 4
d arm length 0.315

Jx, Jy inertia 0.0820
Jz inertia 0.1490
b thrust factor 1.323e−5

k drag factor 1.069e−7

Then the negative definiteness of V̇ < 0 holds true along
any closed loop trajectory that originates within D whenever
ρA(xa,xr, ν, t) ≥ ρ∗A and η > η∗. The existence of a
finite number η∗ is guaranteed for any domain D because
B(xa,xr, t) is globally bounded by virtue of implementing
the DSGI A∗ given by (41), which result in globally bounded
ea trajectories.

Remark 1: It follows from Theorem 6.1 that the magnitude
of the positive sliding mode gain constant η can always be
increased such that an arbitrarily small positive bound ρ∗A
is achieved with guaranteeing the condition V̇ < 0 to hold
over D whenever ρA(xa,xr, ν, t) < ρ∗A. Since the attitude
error state trajectory ea must enter the domain defined by
ρA(xa,xr, ν, t) < ρ∗A in finite time and remain within that
domain, it follows that driving ρ∗A arbitrarily closer to zero
implies driving ea arbitrarily closer to zero and making it
uniformly ultimately bounded, i.e., making ea = 03×1 practi-
cally stable. Moreover, because D can be arbitrarily enlarged
by increasing η∗, then this practical stability is semi-global.

VII. SIMULATION RESULTS

To analyze the performance of proposed control methodol-
ogy, the parameters of X-4 flyer Quadrotor are used to model
the vehicle, whose specifications are given in Table I, see
[1]. Numerical simulations are conducted for the following
scenarios.

A. Waypoints following

In this plot, the aerial vehicle is commanded to follow the
pre-defined waypoints. Simulation result shown by Fig. 3a
and 3b, reveals that the vehicle has successfully achieved the
desired positional coordinates. The attitude profiles are shown
in Fig. 3c, whereas the control commands are illustrated in
Fig. 3d.

B. Helical trajectory tracking

In this scenario, the reference helical trajectory is com-
manded such that xed = 10 sin 2πft, yed = 10 cos 2πft
with increasing altitude upto zed = 200m, to examine the
tracking capability in the presence of continuous wind field
shown by Fig. 4a, and by applying −10% variation in the
parameters such as mass, moment of inertia, aerodynamic
thrust and drag coefficients and arm length. The trajectory
tracking performance is shown in Fig. 4b, whereas the actual
and desired attitudes profiles are shown in Fig. 4c. The
corresponding control deflections are shown in Fig. 4d, which
demonstrate that the proposed control law is quiet effective
and robust.
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Fig. 4: Helical trajectory tracking

VIII. CONCLUSION

In this paper, the two-loop structured control system is
designed for position and attitude control of multi-rotor aerial
vehicle. The PD control, successfully generates the required
pitch and roll attitude commands based on positional errors
while tracking the desired altitude. In the inner loop, AGDI
control having SMC term, successfully tracks the desired
attitude profiles such that the tracking errors are proven to
ultimately converge to the given neighborhoods of the origin,
guaranteeing semi-global practically stable attitude tracking.
The singularity problem is solved by implementing the dy-
namic scale factor. The null control vector is designed to
stabilize the inner body rate dynamics. Numerical simula-
tions successfully demonstrate the efficiency and robustness

attributes of proposed control approach.
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