
Routability-Driven Timing optimization

Safia HAKIM*, Mr Hassan BERBIA**

* Mentor Graphics Corporation/IC Design Solutions Division – Rabat, Morocco *

** ENSIAS/ Al Jazari Team, University Mohammed V – Rabat, Morocco

E-mail safia_hakim@mentor.com

 h_berbia@yahoo.com

Abstract—The use of post-route optimization on a detailed

routed design is an effective way to improve the timing without

harshly impacting the routability of the design. With the increase

of design complexity, one of the major challenges faced with newer

technologies in VLSI (very large scale integration) design is

routability. It can be difficult to successfully route a design during

routing stage, and it becomes even harder to reroute successfully

and with no violations (timing and physical) after disturbing it

during post-route.

In this paper, we reduce the optimization impact on the routing

topology during the post-route flow stage. This is done by using

fine-grained interleaved calls from optimization to detail routing

with design rule awareness, instead of coarse iterations between

routing and optimization after many targets have been optimized.

Keywords— Vlsi; Asics;Routing; Optimization; DRC; LVS

Introduction

With today’s newer fabrication technology improvements

following Moore’s law, integrated circuits (ICs) are continually

shrinking [1], creating many new challenges for the place and

route flow.

We face a lot of issues in converging during the place and route

flow. Each flow stage impacts downstream steps in the flow,

making later stages like routing and post-route more

challenging, it is hard to successfully route a design during the

routing stage, and it has become even harder to reroute after

disturbing it during the post-route stage. That’s why we have to

control and minimize the optimization disturbance.

Traditionally, post-route optimizations would be limited to

footprint compatible cell swaps, including the restriction of the

same pin locations to avoid impacting routing, or on-route

buffering to minimize rerouting [2]. However in today’s

technologies with more complicated physical design rules,

additional metal layers, and so forth, it is difficult to achieve

accurate estimates before detail routing. This is exacerbated by

problems predicting capacitive coupling. This necessitates

further post-route optimization causing larger perturbations,

making design closure difficult.

Due to the complexity of Application Specific Integrated Circuit

(ASIC) designs, and the very large numbers of interconnections

between logic cells in them, the routing is performed in two

stages: global routing, followed by detail routing. Global routing

is done to provide an estimate of wire capacitance and resistance

for timing analysis earlier in the design flow. Global routing

congestion needs to be accounted for and can be mitigated. The

detailed routing is the task of assigning rectilinear wiring

interconnects – the actual metal shapes – to the nets [3]. In this

paper, we address the detailed routing, especially when used as

an ECO (engineering change order) router after post-route

optimization.

The remainder of this work is organized as follows. Section
2 presents some basic concepts of routing and optimization, and
it describes how the flow engine works. Section 3 explains the
difference between the existing approach and our new approach.
Section 4 provides a case study where we show the benefits of
merging the routing and optimization engines. Finally, Section
5 draws the conclusion.

I. TERMS AND DEFINITIONS:

A simplified view of the ASIC physical implementation flow
consists of the steps shown in Figure 1.

In this paper, we address the problem of rerouting the
designs after appropriate post-route optimization changes have
been performed. In the post-route optimization stage, we address
timing violations exposed by more accurate wiring parasitic
extraction, after detailed routing (physical layer correct
extraction, vias, etc.).

Fig. 1. Place and route flow

mailto:safia_hakim@mentor.com
mailto:h_berbia@yahoo.com
admin
Texte tapé à la machine
Copyright IPCO-2017
ISSN 2356-5608

admin
Texte tapé à la machine
5th International Conference on Control Engineering&Information Technology (CEIT-2017)
Proceeding of Engineering and Technology –PET
Vol.34 pp.13-16

A. Post-route optimization:

The post-route optimization (PRO) operates on detail routed
designs. The PRO engine is designed to minimize disturbances
in the existing wires and quickly bring the design to closure.
PRO fixes both setup and hold timing violations.

Cells are swapped and sized with other cells that have
equivalent footprint and logic. PRO takes advantage of wiring
information to try to insert buffers “on-route” to minimize the
disturbance to existing routing.

After PRO, any open nets need to be routed, such as between
connected pins of newly placed cells that need a wire routed
between them, or for portions of a net that have been removed
due to deletion of buffers. In some cases, a net may need to be
completely rerouted. In addition, any physical design rule
violation (DRV) must be fixed. Thus the need to perform detail
routing after optimization.

B. Detailed routing :

After completion of standard cell placement and
optimization, the next phase is to detail route the ASIC design.
Then extraction of routing and parasitic parameters is done for
the purpose of static timing analysis.

The task for detail routing is to connect the pins of each net
by wires and vias. The wires of different nets must be disjoint,
that is, respective wires of different nets must satisfy certain
minimum distance constraints. Additionally, wiring layout is
limited by constraints specified in the design rules [4]. To make
sure the design is clean after routing, layout versus schematic
(LVS) and design rule checking (DRC) are performed.

C. Physical Verification:

Design rules checks (DRC):

Design rule checks are physical checks of metal width, pitch,
and spacing requirements for the different layers. These rules
depend on the technology. We need to clean up the DRC to
ensure correct logical connections of various components,
otherwise the fabricated chip may be functionally incorrect [5].

The most common design rules used for IC layout are [6]:
- Minimum spacing
- Minimum width
- Minimum edge length
- Encapsulation of layer
- Enclosure violation

Fig. 2. Example showing design rules violations

Fig. 3. Example showing Layout Versus schematic matching

Layout versus schematic (LVS):

LVS is another major check in the physical verification stage. It
verifies that the layout you have created is functionally the same
as the schematic/netlist of the design, i.e., you have correctly
transferred into geometries your intent while creating the design
[7].

Some of the LVS errors are:
- Shorts: wires that should not be connected are overlapping.
- Opens: connections are not complete for certain nets.

II. ROUTING AND OPTIMIZATION MERGE (CASE STUDY)

In this section, we describe the routability driven optimization

problem and our approach.

A. Problem formulation

The optimizer doesn’t update detail routing under the hood,
so the routing topology can become inaccurate during
optimization. Global routing (GR) estimates are used, which can
be inaccurate. Figure 4 illustrates this problem.

While performing timing optimization, the optimizer adds,
resizes, and removes cells. This includes removal, replacement,
and breaking of some connections, creating DRVs (open net,
disconnected wires, etc.) which require detail routing to fix. Also
while performing routing, the router takes some detours and
moves some wire, along with routing new nets added by the
optimizer. This disturbs the timing, requiring another round of
optimization.

We stop the back and forth between the router and the
optimizer once we clean all DRVs and meet timing
requirements. The DRV and the timing violations must be fixed
for the design to function correctly. These iterations increase the
flow runtime, and make design closure difficult, especially for
newer technology nodes.

Fig. 4. Example showing the current behvior. Since the optimizer calls the GR

server under the hood, the new buffered net is now globally routed.

Fig. 5. Back and forth between router and optimizer for design closure.

B. Our approch

The objective is to preserve the routing topology, by calling
the ECO router after each optimization target, instead of calling
the routing engine on the whole design after the optimization
engine has finished optimizing many targets.

The routing changes needed after optimization are just a part
of the routing algorithm. So instead of calling each engine
separately, increasing run time, we suggest making the post-
route optimizer directly call the needed router function.

The basic idea is to make the optimizer aware of physical DRV
by modeling some of the design rules to preserve routability
along with improving timing. The purpose is to make the
optimization engine use those models during the optimization
process for better design closure.

Fig. 6. New optimization approach to avoid iterations between the router and
the optimization engine.

Fig. 7. Existing post-route algorithm.

Fig. 8. New post-route optimization approch Algorithm Tcl wise

C. Algorithms:

Our Algorithm is not yet implemented at the C++ level in the
Mentor Graphics Nitro-SoCTM place-and-route tool. To prove
the benefits of our approach, we present our algorithm
(Algorithm2) in a way that can be implemented in the Tcl
programming language. All our experiments were performed
using Nitro-SoC.

Figure 7 presents the default algorithm (Algorithm 1) where the
optimizer and the router are called separately. Figure 8 shows
the new Algorithm (Algorithm2) where the two engines are
tightly interleaved with each other.

Algorithm 1: default Approach

Input:

 Set optimization mode and objectives.

 Get list of pins to optimize from the bottleneck engine.

 Get congestion map from the GR server.

 Get arrival and required times from the timer.

Output:

 Improvement of a specified objective for a specific mode

Optimization:

foreach pin [pin_to_optimize]

 foreach mode [optimization mode]

 foreach transform [optimization transform list]

 Apply the chosen transform on the pin

 end

 end

end

Routing:

Call detailed router on the whole design

Algorithm 2: New Approach

Input:

 Set optimization mode and objectives.

 Get list of pins to optimize from the bottleneck engine.

 Get congestion map from the GR server.

 Get arrival and required times from the timer.

Output:

 Improvement of a specified objective for a specific mode

Optimization:

foreach pin [pin_to_optimize]

 foreach mode [optimization mode]

 foreach transform [optimization transform list]

 Apply the chosen transform on the pin

 Detail route the change as needed

 end

 end

end

III. EXPERIMENTAL RESULTS

To evaluate our proposed approach, we conducted
experiments on three detail routed designs, detailed in Table 1.

TABLE .1.Experimental Designs Caracteristiques

We applied Algorithm 1 and Algorithm 2 on our design. In
Table 2, we report the DRC and LVS violations, the total
negative slack for the timing violations, and design utilization.

TABLE .2. DRC and LVS comparison between default and new approach.

Using initial values from Table 1 and final values from Table
2 we calculated the improvement:

TABLE .3. DRC and LVS comparison between default and new approach.

The reduction in DRC violations is up to 27.2%, and the
reduction in LVS violations is up to 13.1%. This is a very
encouraging improvement, especially in such a competitive
domain where even the smallest gain can make a difference.

IV. CONCLUSION

The objective of this work is to prove the need for a smart
engine combining both optimization and some of the routing

features. We show that by adopting the new approach, the
improvement was up to a 27.2% reduction in DRC violations
and 13.1% reduction in LVS violations. This motivates
implementing this approach in C++.

The C++ implementation will provide more accurate results.
It will help us avoid the overheads for a separate optimizer call
on each target, which was not possible in Tcl, thus saving
runtime.

ACKNOWLEDGMENTS

This paper was supported by Mentor Graphics Corporation.
We thank our colleagues from the IC Design Solutions division,
who provided insight and expertise that greatly assisted the
research.

We thank Dr. Hazem El Tahawy (Mentor Graphics,

Managing Director MENA Region) for supporting this work.

From the Place-and-Route Solutions group in the ICDS

division, we thank David Chinnery (Architect, Optimization),

Sarvesh Bhardwaj (Group Architect, Optimization), for help

and guidance through this research; and Jay Yanamandala

(Architect, Product Validation) for the opportunity to work on

this topic.

REFERENCES

[1] Hiroshi Iwai, “End of the scaling theory and Moore's law”, International

Workshop on Junction Technology (IWJT), 2016.

[2] David Chinnery, Leon Stok, David Hathaway, and Kurt Keutzer, “Design
Flows”, chapter 1 in EDA for IC Implementation, Circuit Design, and
Process Technology, Second Edition, CRC Press, 2016.

[3] Tim Nieberg, “Gridless pin access in detailed routing”, Design
Automation Conference, 2011.

[4] Dian Zhou, Modern ASIC Design, Science Press, 2011.

[5] Vipul Patel, Design Rule Checks (DRC) - A Practical View for 28nm
Technology, Design & Reuse, 2017.

http://www.design-reuse.com/articles/41504/design-rule-checks-drc-a-
practical-view-for-28nm-technology.html

[6] Sini Mukundan, Physical Design Flow V: Physical Verification, VLSI
Pro. http://vlsi.pro/physical-design-flow-v-physical-verification/

[7] Jeremy Espenshade, and Michael Romero, “CUDA Independent Study
Final Paper”, Halogenica, 2008. http://halogenica.net/wp-
content/uploads/2010/12/CUDA_DRC_Paper.pdf

Circuits Algorithm 1 Algorithm 2 Gain

DRC

Gain

LVS

DRC LVS DRC LVS

Circuit 1 13.1% -11.9% 12.0% -12.1% 1.1% 0.2%

Circuit 2 21.0% 0.0% -6.2% 0.0% 27.2% 0.0%

Circuit 3 0.0% 22.0% 0.0% 8.9% 0.0% 13.1%

http://www.design-reuse.com/articles/41504/design-rule-checks-drc-a-practical-view-for-28nm-technology.html
http://www.design-reuse.com/articles/41504/design-rule-checks-drc-a-practical-view-for-28nm-technology.html
http://vlsi.pro/physical-design-flow-v-physical-verification/
http://halogenica.net/wp-content/uploads/2010/12/CUDA_DRC_Paper.pdf
http://halogenica.net/wp-content/uploads/2010/12/CUDA_DRC_Paper.pdf

