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Abstract—The use of post-route optimization on a detailed 

routed design is an effective way to improve the timing without 

harshly impacting the routability of the design. With the increase 

of design complexity, one of the major challenges faced with newer 

technologies in VLSI (very large scale integration) design is 

routability. It can be difficult to successfully route a design during 

routing stage, and it becomes even harder to reroute successfully 

and with no violations (timing and physical) after disturbing it 

during post-route. 

In this paper, we reduce the optimization impact on the routing 

topology during the post-route flow stage. This is done by using 

fine-grained interleaved calls from optimization to detail routing 

with design rule awareness, instead of coarse iterations between 

routing and optimization after many targets have been optimized. 
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Introduction  

With today’s newer fabrication technology improvements 

following Moore’s law, integrated circuits (ICs) are continually   

shrinking [1], creating many new challenges for the place and 

route flow. 

We face a lot of issues in converging during the place and route 

flow. Each flow stage impacts downstream steps in the flow, 

making later stages like routing and post-route more 

challenging, it is hard to successfully route a design during the 

routing stage, and it has become even harder to reroute after 

disturbing it during the post-route stage. That’s why we have to 

control and minimize the optimization disturbance.  

Traditionally, post-route optimizations would be limited to 

footprint compatible cell swaps, including the restriction of the 

same pin locations to avoid impacting routing, or on-route 

buffering to minimize rerouting [2]. However in today’s 

technologies with more complicated physical design rules, 

additional metal layers, and so forth, it is difficult to achieve 

accurate estimates before detail routing. This is exacerbated by 

problems predicting capacitive coupling. This necessitates 

further post-route optimization causing larger perturbations, 

making design closure difficult.  

Due to the complexity of Application Specific Integrated Circuit 

(ASIC) designs, and the very large numbers of interconnections 

between logic cells in them, the routing is performed in two 

stages: global routing, followed by detail routing. Global routing 

is done to provide an estimate of wire capacitance and resistance 

for timing analysis earlier in the design flow. Global routing 

congestion needs to be accounted for and can be mitigated. The 

detailed routing is the task of assigning rectilinear wiring 

interconnects – the actual metal shapes – to the nets [3]. In this 

paper, we address the detailed routing, especially when used as 

an ECO (engineering change order) router after post-route 

optimization. 

The remainder of this work is organized as follows. Section 
2 presents some basic concepts of routing and optimization, and 
it describes how the flow engine works. Section 3 explains the 
difference between the existing approach and our new approach. 
Section 4 provides a case study where we show the benefits of 
merging the routing and optimization engines. Finally, Section 
5 draws the conclusion. 

I. TERMS AND DEFINITIONS: 

A simplified view of the ASIC physical implementation flow 
consists of the steps shown in Figure 1. 

In this paper, we address the problem of rerouting the 
designs after appropriate post-route optimization changes have 
been performed. In the post-route optimization stage, we address 
timing violations exposed by more accurate wiring parasitic 
extraction, after detailed routing (physical layer correct 
extraction, vias, etc.).  

 

 

Fig. 1. Place and route flow 
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A. Post-route optimization: 

The post-route optimization (PRO) operates on detail routed 
designs. The PRO engine is designed to minimize disturbances 
in the existing wires and quickly bring the design to closure. 
PRO fixes both setup and hold timing violations. 

Cells are swapped and sized with other cells that have 
equivalent footprint and logic. PRO takes advantage of wiring 
information to try to insert buffers “on-route” to minimize the 
disturbance to existing routing.  

After PRO, any open nets need to be routed, such as  between 
connected pins of newly placed cells that need a wire routed 
between them, or for portions of a net that have been removed 
due to deletion of buffers. In some cases, a net may need to be 
completely rerouted. In addition, any physical design rule 
violation (DRV) must be fixed. Thus the need to perform detail 
routing after optimization. 

B. Detailed routing : 

After completion of standard cell placement and 
optimization, the next phase is to detail route the ASIC design. 
Then extraction of routing and parasitic parameters is done for 
the purpose of static timing analysis. 

The task for detail routing is to connect the pins of each net 
by wires and vias. The wires of different nets must be disjoint, 
that is, respective wires of different nets must satisfy certain 
minimum distance constraints. Additionally, wiring layout is 
limited by constraints specified in the design rules [4]. To make 
sure the design is clean after routing, layout versus schematic 
(LVS) and design rule checking (DRC) are performed. 

C. Physical Verification: 

Design rules checks (DRC): 

Design rule checks are physical checks of metal width, pitch, 
and spacing requirements for the different layers. These rules 
depend on the technology. We need to clean up the DRC to 
ensure correct logical connections of various components, 
otherwise the fabricated chip may be functionally incorrect [5]. 

The most common design rules used for IC layout are [6]:  
- Minimum spacing  
- Minimum width  
- Minimum edge length  
- Encapsulation of layer 
- Enclosure violation 

 

 
Fig. 2. Example showing design rules violations  

 

 

Fig. 3. Example showing Layout Versus schematic matching 

Layout versus schematic (LVS): 

LVS is another major check in the physical verification stage. It 
verifies that the layout you have created is functionally the same 
as the schematic/netlist of the design, i.e., you have correctly 
transferred into geometries your intent while creating the design 
[7].  

Some of the LVS errors are: 
- Shorts: wires that should not be connected are overlapping. 
- Opens: connections are not complete for certain nets. 

II. ROUTING AND OPTIMIZATION MERGE (CASE STUDY) 

In this section, we describe the routability driven optimization 

problem and our approach.  

A. Problem formulation  

The optimizer doesn’t update detail routing under the hood, 
so the routing topology can become inaccurate during 
optimization. Global routing (GR) estimates are used, which can 
be inaccurate. Figure 4 illustrates this problem. 

While performing timing optimization, the optimizer adds, 
resizes, and removes cells. This includes removal, replacement, 
and breaking of some connections, creating DRVs (open net, 
disconnected wires, etc.) which require detail routing to fix. Also 
while performing routing, the router takes some detours and 
moves some wire, along with routing new nets added by the 
optimizer. This disturbs the timing, requiring another round of 
optimization. 

We stop the back and forth between the router and the 
optimizer once we clean all DRVs and meet timing 
requirements. The DRV and the timing violations must be fixed 
for the design to function correctly. These iterations increase the 
flow runtime, and make design closure difficult, especially for 
newer technology nodes. 

 

 

Fig. 4. Example showing the current behvior. Since the optimizer calls the GR 

server under the hood, the new buffered net is now globally routed. 



 

 

Fig. 5. Back and forth between  router and optimizer for design closure. 

B. Our approch  

The objective is to preserve the routing topology, by calling 
the ECO router after each optimization target, instead of calling 
the routing engine on the whole design after the optimization 
engine has finished optimizing many targets.  

The routing changes needed after optimization are just a part 
of the routing algorithm. So instead of calling each engine 
separately, increasing run time, we suggest making the post-
route optimizer directly call the needed router function. 

The basic idea is to make the optimizer aware of physical DRV 
by modeling some of the design rules to preserve routability 
along with improving timing. The purpose is to make the 
optimization engine use those models during the optimization 
process for better design closure. 

 

Fig. 6. New optimization approach to avoid iterations between the router and 
the optimization engine. 

 

  

Fig. 7. Existing post-route algorithm. 

Fig. 8. New post-route optimization approch  Algorithm Tcl wise 

C. Algorithms: 

Our Algorithm is not yet implemented at the C++ level in the 
Mentor Graphics Nitro-SoCTM place-and-route tool. To prove 
the benefits of our approach, we present our algorithm 
(Algorithm2) in a way that can be implemented in the Tcl 
programming language. All our experiments were performed 
using Nitro-SoC. 

Figure 7 presents the default algorithm (Algorithm 1) where the 
optimizer and the router are called separately. Figure 8 shows 
the new Algorithm (Algorithm2) where the two engines are 
tightly interleaved with each other.  

 

Algorithm 1: default Approach 

Input: 

 Set optimization mode and objectives. 

 Get list of pins to optimize from the bottleneck engine. 

 Get congestion map from the GR server. 

 Get arrival and required times from the timer. 

Output:  

 Improvement of a specified objective for a specific mode  

Optimization: 

foreach pin [pin_to_optimize] 

      foreach mode [optimization mode] 

              foreach transform [optimization transform list] 

                    Apply the chosen transform on the pin  

             end  

       end  

end  

Routing: 

Call detailed router on the whole design 

 

Algorithm 2: New Approach 

Input: 

 Set optimization mode and objectives. 

 Get list of pins to optimize from the bottleneck engine. 

 Get congestion map from the GR server. 

 Get arrival and required times from the timer.  

Output:  

 Improvement of a specified objective for a specific mode  

Optimization: 

foreach pin [pin_to_optimize] 

         foreach mode [optimization mode] 

                  foreach transform [optimization transform list] 

                      Apply the chosen transform on the pin  

                      Detail route the change as needed 

                 end  

         end  

end  

 



III. EXPERIMENTAL RESULTS 

To evaluate our proposed approach, we conducted 
experiments on three detail routed designs, detailed in Table 1. 

TABLE .1.Experimental Designs Caracteristiques   

We applied Algorithm 1 and Algorithm 2 on our design. In 
Table 2, we report the DRC and LVS violations, the total 
negative slack for the timing violations, and design utilization. 

TABLE .2. DRC and LVS comparison between default and new approach. 

Using initial values from Table 1 and final values from Table 
2 we calculated the improvement: 

 
 

TABLE .3. DRC and LVS comparison between default and new approach. 

The reduction in DRC violations is up to 27.2%, and the 
reduction in LVS violations is up to 13.1%. This is a very 
encouraging improvement, especially in such a competitive 
domain where even the smallest gain can make a difference. 

IV. CONCLUSION   

The objective of this work is to prove the need for a smart 
engine combining both optimization and some of the routing 

features. We show that by adopting the new approach, the 
improvement was up to a 27.2% reduction in DRC violations 
and 13.1% reduction in LVS violations. This motivates 
implementing this approach in C++.  

The C++ implementation will provide more accurate results.  
It will help us avoid the overheads for a separate optimizer call 
on each target, which was not possible in Tcl, thus saving 
runtime. 
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Circuits  Algorithm 1 Algorithm 2 Gain 

DRC  

Gain 

LVS 

DRC  LVS DRC  LVS 

Circuit 1 13.1% -11.9% 12.0% -12.1% 1.1% 0.2% 

Circuit 2 21.0% 0.0% -6.2% 0.0% 27.2% 0.0% 

Circuit 3 0.0% 22.0% 0.0% 8.9% 0.0% 13.1% 
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