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Abstract—This paper studies the consensus for a group of
agents which have a discrete-time double-integrator dynamics.
To solve this problem, a Model Predictive Control (MPC) scheme
is introduced. The proposed control protocol is decentralized and
is designed by combining graph theory with a predictive control
algorithm to take into account the switches on the communication
topology. The predictive strategy is used to estimate input
and output of agent through a receding horizon. Contrary to
many existing works, the cost function is designed using the
difference between two consecutive inputs. The controller has
integrator properties to eliminate steady-state errors. Finally,
some simulation results are given to show the effectiveness of
the proposed model predictive control.

I. INTRODUCTION

In recent years, many works on multi-agent systems (MAS)
have been done in many areas, e.g. formation control [1]
[3], target tracking [4] [5], optimal coverage [6], distributed
monitoring [7] [8], etc. Compare with a single agent,
multiple agents may perform a mission more efficiently and
provide higher flexibility during the task execution. One of
fundamental problems on MAS is to design decentralized
control protocols to guarantee agreement from all agents
regarding a certain quantity of interest via local interaction,
called consensus [9] [10]. Some results on consensus schemes
can be categorized into two types depending on whether there
is a leader or not. For instance, [11] [12] investigated when
there is no leader or when the leader is static.

Compared with the continuous-time systems, discrete-time
systems are more suitable for practical applications. Some
interesting works related to the topic of first-order discrete-
time consensus stability were reported in [13] [14] [15].
The main objective of [13] was to theoretically study the
coordination of a group of autonomous agents using Vicsek
model. In [14], some consensus protocols for discrete-time
systems with switching topology were provided and the
robustness against time delays was analyzed. These two kinds
of protocols are based using the same data at two time-steps.

The dynamic behavior of discrete-time multi-agent systems
with general communication topologies was considered in
[15]. For topologies that have a spanning tree, the consensus
problem was studied. It was proved that the states of internal
agents converge to a convex combination of boundary agents
in the case of communication time delays.

Model Predictive Control (MPC) is a form of control
in which the output of the system can be predicted from
some prediction horizon. The output of the MPC controller
is determined based on input and output at a previous time
and the control signal along control horizon. Futhermore,
MPC has ability to handle control and state constraints for
discrete-time systems [16]. This method can be applied for
the control of a group of agents by letting each agent solve, at
each step, a constrained finite-time optimal control problem
involving the state of neighboring agents. For agents modeled
by a discrete-time system, [17] proposed decentralized MPC
schemes with control input constraints and showed that under
the proposed decentralized schemes, multi-agent systems
with single- and double-integrator dynamics asymptotically
achieves consensus under mild assumptions. However, it was
assumed that the control horizon equals the prediction control,
which reduced the degree of freedom for the controller design.
To remove the problem in degree of freedom in controller
design, [19] proposed a consensus scheme for discrete-time
single-integrator MAS under switching directed interaction
graphs where the control horizon can be arbitrarily picked
from one to prediction horizon. Another result of MPC is [18]
which proposed a MPC strategy to increase the consensus
convergence rate in MASs under some special communication
networks.

This paper deals with the consensus problem for discrete-
time double-integrator MAS. The objective is to design a
MPC protocol by combining graph theory with a predictive
control algorithm such that the states of all agents reach an
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agreement while taking into account the switches on the
communication topology. Since our focus is to minimize
tracking errors between agents, we try to design the criteria
function using the difference between two consecutive inputs.
Therefore, the controller has integrator properties to eliminate
steady-state errors.

The paper is organized as follows. In Section 2, some
concepts on algebraic graph theory are given and the
consensus problem is formulated. In Section 3, the controller
design which solves the consensus problem is discussed for
discrete-time double-integrator systems. In Section 4, some
simulations results are given to show the effectiveness of the
proposed controller. Finally, concluding remarks are drawn in
Section 5.

Notations: The definitions R
m, Rmn and R

nn denote the
sets of m-dimensional real column vectors, mn-dimensional
real column vectors and n× n dimensional real matrices,
respectively. ‖.‖ indicates the Euclidean norm.The definition
∗(k+ l|k) denotes the prediction value ∗ at instant k+ l based
on the currently available information at instant k.

II. RECALLS ON GRAPH THEORY

Consider a MAS composed of n agents. In this paper, at
time k, the communication network among agents is illustrated
by a digraph (directed graph) denoted as G (k) = {V ,E (k)}.
V = {1, . . . ,N} is the set of nodes which correspond to
agents. E (k) ⊆ {V × V } is the set of edges. An edge
( j, i) ∈ E (k), with i 6= j, exists if at time k agent i can receive
information from agent j. At time k, the set of neighbors
to the node i ∈ V is Ni(k) = j ∈ V : ( j, i) ∈ E (k) and
|Ni(k)|, i ∈ V , is the valency or degree of i-th node at time k.
A (k) = (ai j(k)) ∈ RN×N is defined as the weighted adjacency
matrix of G (k) where ai j(k)> 0 if ( j, i)∈ E (k) and ai j(k) = 0,
otherwise. The graph Laplacian matrix of G (k) is defined
as L (k) = (li j(k)) ∈ R

N×N with lii(k) = ∑
N
j=1, j 6=i ai j(k)

and li j(k) = −ai j(k) for i 6= j. A digraph G (k) contains
a spanning tree if there is a node (called root node) such
that there is a directed path from this node to every other
node. It is connected if there is a path between any two nodes.

In this paper, it is assumed that the digraph is time-varying.
Such time-varying graphs can be found in many engineering
applications due to creation and failure of communication
links, reconfiguration of formations, presence of obstacles and
so on. The corresponding Laplacian is L(k) = Lσ(k) where
σ : {0, . . .}→Q is a switching signal and Q = {1, · · · ,M} is
a finite index set. The changes of σ are the switching times
sq, q = 0,1, · · · with s0 = t0.

In the following, the time-varying graph is supposed to be
jointly connected. It means that the union of graphs G (k)

whose edge set is the union of edge sets of all graphs G (k)
is connected.

A. Problem Statement

Let us consider the MAS consisting of n agents with
discrete-time linear dynamics, described by:

xi(k+1) = Axi(k)+Bui(k), i = 1,2, ...,n (1)

with A =

[
1 δ

0 1

]
and B =

[ 1
2 δ 2

δ

]
.

Here xi ∈ R2 (resp. ui(k) ∈ R) indicates the state (resp.
control input) of the ith agent at time k. δ ∈ R+ is the
sampling period.

In this paper, the control objective is to design a decentral-
ized protocol such that the MAS achieves consensus. It means
that

lim
k→∞
‖xi(k)−x j(k)‖= 0 ∀i, j ∈ V , i 6= j (2)

for any initial state xi(0).

III. DECENTRALIZED MODEL PREDICTIVE SCHEME

In this section, we propose to solve the problem of MAS
consensus using a model predictive scheme.

Let Hp ≥Hu ≥ 1 denote the length of the prediction horizon
(resp. length of the control horizon). Contrary to many existing
works, we use the difference ∆ui between two consecutive
inputs to eliminate the steady state errors, i.e.

∆ui(k+ l) =
{

ui(k+ l)−ui(k+ l−1) 0≤ l ≤ Hu−1
0 Hu ≤ l ≤ Hp

(3)
Using the difference between two consecutive inputs, one can
derive the following predictions at time k

xi(k+1|k) = Axi(k)+Bui(k)
= Axi(k)+B(∆ui(k)+ui(k−1))

xi(k+2|k) = Axi(k+1|k)+Bui(k+1)
= A

(
Axi(k)+B(∆ui(k)+ui(k−1))

)
+B(∆ui(k+1)+∆ui(k)+ui(k−1))

= A2xi(k)+(AB+B)∆ui(k)
+B∆ui(k+1)+(AB+B)ui(k−1)

xi(k+3|k) = Axi(k+2|k)+Bui(k+2)
= A3xi(k)+(AB2 +AB+B)∆ui(k)

+(AB+B)∆ui(k+1)
+B∆ui(k+2)
+(A2B+AB+B)ui(k−1)



xi(k+Hp|k) = AHpxi(k)+
(Hp−1

∑
i=0

AiB
)

∆ui(k)

+

(Hp−2
∑

i=0
AiB

)
∆ui(k+1)+ . . .

+B∆ui(k+Hp−1)

+

(Hp−1
∑

i=0
AiB

)
ui(k−1)

Hence, one can write the previous equalities as follows:
xi(k+1|k)
xi(k+2|k)
xi(k+3|k)

...
xi(k+Hp|k)

=


A
A2

A3

...
AHp

xi(k)+



B
AB+B

A2B+AB+B
...

Hp−1
∑

i=0
AiB


ui(k−1)

+



B 0 0 0
AB+B B 0 0

A2B+AB+B AB+B B
...

...
...

. . .
...

Hp−1
∑

i=0
AiB

Hp−2
∑

i=0
AiB . . . B




∆ui(k)

∆ui(k+1)
∆ui(k+2)

...
∆ui(k+Hp−1)



In a compact form, the dynamic system becomes as follows:

Xi(k) = Pxxi(k)+Puui(k−1)+P4∆Ui(k) (4)

with Xi(k) =


xi(k+1|k)
xi(k+2|k)
xi(k+3|k)

...
xi(k+Hp|k)

, ∆Ui(k) =


∆ui(k)

∆ui(k+1)
∆ui(k+2)

...
∆ui(k+Hp−1)

,

Px =


A
A2

A3

...
AHp

, Pu =



B
AB+B

A2B+AB+B
...

Hp−1
∑

i=0
AiB


and

P4 =



B 0 0 0
AB+B B 0 0

A2B+AB+B AB+B B
...

...
...

. . .
...

Hp−1
∑

i=0
AiB

Hp−2
∑

i=0
AiB . . . B


.

Then, we select the MPC cost function for agent i as
follows:

Ji(k) = ‖Pxxi(k)+Puui(k−1)− ri(k)‖2
Q +‖∆Ui(k)‖2

R (5)

where Q and R represents the associated state-weighted matrix
with and control-weighted matrix with appropriate dimensions,

respectively. ri(k) denotes the reference state for agent i over
the future Hp prediction step and will be defined hereafter.

Remark 1: It should be notify that the proposed cost
function (5) is decentralized if the reference state ri(k) only
depends on the neighboring agents of agent i at time k.

To solve the consensus problem, we want to minimize
the tracking errors between agents using the cost function
(5), derived from the difference ∆ui between two consecutive
inputs. Therefore, let us define the quadratic optimization
problem for each agent i as

minJi(k) =
Hp

∑
l=1
‖xi(k+ l|k)− ri(k)‖2

Q +
Hu−1

∑
l=0
‖∆ui(k+ l|k)‖2

R

(6)
subject to:

xi(k+ l|k) = Axi(k)+B(∆ui(k)+ui(k−1)) (7)

The reference state is chosen as

ri(k) =
1

|Ni(k)|+1 ∑
j∈Ni(k)

⋃
i
x j(k) (8)

It only depends on the states of the ith agent and its neighbors
which implies that the cost function (6) is decentralized.
Furthermore, it evolves during time according to the commu-
nication topology through the set Ni(k).

IV. SIMULATION RESULTS

In this section, some simulation results are provided to
verify the theoretical analysis. Consider the topology of MAS
with n = 4 agents as shown in Fig. 1 taken from [19]. In the
following, the sampling period is set to δ = 0.1s.

Fig. 1: Switching communication topologies between agents

Let us consider example given in [20]. In this example, the
multi-agent system is modeled as, ∀i = 1, . . . ,4,

zi(k+1)=

 0.6005 −0.1 0.4005
−0.1 0.1 0.1
−0.5995 −1.9 1.6005

zi(k)+

3 0
0 2
1 1

vi(k)

(9)



The initial states of each agents are given as

x1(0) =

10
1
3

, x2(0) =

0
1
3

, x3(0) =

−2
3
0

, x4(0) =

 6
0
−2


Through an appropriate change of coordinate, model
(9) can be easily rewritten as:

xi(k+1) =

0.3 0 0
0 1 0.1
0 0 1

xi(k)+

1 0
0 1

2 0.12

0 0.1

vi(k) (10)

It means that the system can be divided into a simple and a
double integrator subsystems. Hence, one can easily apply the
proposed model predictive controller described in the previous
section. The control parameter are selected as Hp = 3 and
Hu = 2.

The consensus problem described in equation (2) is archived
using the proposed model predictive control. We can see that
the state of all agents converge to a consensus point. Figure 2
shows that the state x1 achieves the consensus with a settling
time less than 2s. For the state x2 and x3, figures 3-4, illustrate
that the consensus is archived with settling time less than 3s.

Fig. 2: Evolution of the agent state x1

The corresponding the control input is given in fig. 5,
Figure 6 and 7 depict the influence of the prediction horizon

Hp especially in terms of settling time.

V. CONCLUSION

In this paper, a model predictive control protocol is de-
veloped for consensus of MASs with discrete-time double-
integrator dynamics under time-varying directed interaction
graphs topologies. The control protocol is decentralized and
is designed by combining graph theory with a predictive
control algorithm to take into account the switches on the
communication topology. The cost function is design using
the difference between two consecutive inputs. The controller

Fig. 3: Evolution of the agent state x2

Fig. 4: Evolution of the agent state x3

has integrator properties to eliminate steady-state errors. The
settling time of consensus depends on the prediction horizon
parameters. Some simulation results have been given to show
the effectiveness of the proposed controller.
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