
An improved multi-database classification approach

Salim Miloudi, Sid Ahmed Rahal Hebri, Salim Khiat

Department of computer science

University of Sciences and Technology of Oran Mohamed Boudiaf (USTO-MB)

BP 1505 El M’Naouar, 31000 Oran, Algeria

salim.miloudi@univ-usto.dz, Rahalsa2001@yahoo.fr, salim.khiat@univ-usto.dz

Abstract— For business decision making purpose, multi-

branch companies may need to mine their databases distributed

through their branches in order to extract useful information

called patterns. Traditional data mining techniques integrate all

the data from these databases to amass a huge dataset for pattern

discovery. However, this approach may generate an expensive

search cost for centralized processing and might disguise some

important patterns. To deal with the latter problems, we may

need to classify the multiple databases into clusters of similar

databases. Each cluster could be analyzed individually to

discover new patterns reflecting specific information about each

group of branches. Inspired by the existing works, this paper

presents an improved multi-database classification (MDC)

approach which enhances the quality of the patterns mined from

the databases and optimizes the time complexity of the

classification algorithm.

Keywords— Multi-database classification (MDC); Database

clustering; Database selection; Relevance factor;Similarity

measure; Goodness measure; Pattern Analysis; Frequent-itemsets;

Association rules

I. INTRODUCTION

Large organizations have different types of business
distributed through their branches and each branch may have
its own database which collects continuously transactions
from customers. For analyzing purpose, it is important to mine
these multiple databases to discover new patterns (e.i.,
frequent itemsets and association rules) useful for the decision
making process. Traditional data mining techniques known as
mono-database mining [1-3] integrate all the data from these
databases to form one dataset for knowledge discovery.
Nevertheless, this process may accumulate a huge database for
centralized processing and may hide some important patterns
reflecting the characteristics of the branches. For example, a
pattern such as “75% of the branches in certain regions
observe that 30% of coffee’s purchases imply also the
purchase of sugar” cannot be discovered by using the mono-
database mining. In addition, it’s not always obvious to
integrate all the data from the multiple databases due to the
data privacy and data irrelevancy issues. To overcome the
latter problems, we need to identify the groups of databases
that enhance the quality of the patterns discovered when they
are mined together. This approach is referred to as the multi-
database classification (MDC), which aims to classify the
multiple databases into disjoint clusters sharing common

features. For example, if a large company has 10 branches
including 5 branches for household appliances, 3 branches for
clothing and 2 branches for food, we cannot apply existing
data mining techniques over the union of the 10 branch
databases. We might lose the data distribution. That’s why, we
need to classify them into 3 clusters according to their type of
business, and then we could analyze each database cluster
individually. Consequently, mining the multiple databases
becomes more manageable. Few MDC algorithms have been
proposed in the literature [4-7]. They differ in (1) the
similarity measure used to identify the relevant databases, (2)
the goodness measure used to assess the classification and (3)
the execution time taken to find the best classification. The
accuracy of a MDC algorithm is highly determined by the
similarity measure used to calculate the relevance between
databases. In the work proposed by A.Adhikari and PR
.Rao[9], more the number of frequent itemsets shared between
databases is large, more cohesive are the clusters discovered.
However, existing algorithms in [4-7] neglect some infrequent
itemsets, which are not supported by a certain databases (e.i,
their support values are less than the user-defined threshold),
but these itemsets may become frequent when the databases
are merged and a traditional data mining technique is applied.
In this paper, we propose an improved similarity measure
based on maximizing the number of frequent itemset
discovered by the multi-database mining process [1-3]. Thus,
only relevant databases that generate more frequent itemsets
are put into the same cluster. To do so, we use the
synthesizing model proposed in [8] combined with the
correction factor defined in [9] to estimate the support of a
frequent itemset in the union of two databases. In the other
hand, we improve the time complexity of the classification
algorithm by proposing a graph-based classification approach
which represents the similar databases as a set of vertices each
pair of which is connected by an edge. The experiments
carried on public databases show the efficiency of our
approach against the existing works.

The rest of the paper is organized as follows. Section II
presents in details the existing MDC approaches proposed in
the literature. Section III discusses and compares the different
MDC algorithms. In Section IV, we present our contribution
to improve the existing works and Section V concludes the
discussion and highlights the future works.

PC
Typewriter
Proceedings of Engineering & Technology (PET)

PC
Typewriter
pp. 610-616

PC
Typewriter
Copyright IPCO-2016

PC
Typewriter
ISSN: 2356-5608

User1
Typewritten Text
3rd International Conference on Automation, Control, Engineering and Computer Science (ACECS'16)

User1
Typewritten Text

II. PRESENTATION OF THE MDC APPROACHES

In the literature, we distinguish two categories of MDC
approaches according to whether they are dependent or
independent application. In this paper, we focus on studying
the independent application approaches.

A. Dependent-application Approach for MDC

A dependent-application strategy for MDC, referred to as
database-selection [10], aims to identify databases which are
relevant to a certain user-request denoted Q. The authors H.
Liu, H. Lu and J. Yao [10] have proposed a relevance factor
RF, to measure the deviation between Q and the attributes of a
relational table. The time complexity of the proposed
algorithm is O(m×N×M) times, such that N and M are the
maximum number of records and attributes in the m databases
respectively. Obviously, for large databases, the time
complexity is going to increase significantly.

Database selection represents a feasible way to avoid
joining irrelevant databases with the relevant ones and then it
reduces the search space to explore and enhances the quality
of the patterns discovered with the reference to the user-
request. However, for real world applications, this method
cannot be applied when the multiple databases are mined
without specifying a user application. Moreover, due to the
privacy issue, some branches may refuse to share their original
row data. In this case, database selection isn’t appropriate
since it requires a direct access to the records of each database.
The problems above motivated many authors to design a new
MDC algorithms independent-application [4-7] to deal with
the limitations of the dependent-application approach.

B. Independent-application Approach for MDC

Given a set of n databases D={D1,D2,…,Dn} corresponding

to the n branches of an inter-state company, an independent-

application classification strategy is referred to as database

clustering, which aims to search for the best classification of

the n databases without specifying any application. To do so,

existing MDC algorithms proposed in [4-7] generate m∈

 1, 𝑛2−𝑛

2
 candidate classifications incrementally until finding

the best classification which optimizes a certain goodness

measure. In general, an MDC algorithm performs as follows:

a) Build a similarity matrix of size n×n using a similarity

measure sim. In Section III, we present some similarity
measures.

b) For each distinct similarity value δ listed in a sorted order,
a candidate classification class(D,sim,δ) is generated such
that two database Di and Dj are put in the same cluster if
sim(Di,Dj) ≥ δ. In [4], each similarity level δ is selected
based on a step value λ given initially by the user.

c) Evaluate each candidate classification using a quality
measure goodness.

In the following section, we present a comparative study of the
different MDC algorithms proposed in the literature.

III. DISCUSSING AND COMPARING EXISTING MDC

ALGORITHMS

The authors Wu X, Zhang C and Zhang S in [4] were the
first to propose a new approach independent-application for
classifying transactional databases. Thus, two similarity
measures, sim1 and sim2 have been proposed to group similar
databases into disjoint clusters without specifying any
application.

1) Definition: The similarity sim1(Di,Dj) is computed

based on the set of items shared between two transactional

databases Di and Dj and it is defined as follows.

)()()()()(
j

DItems
i

DItems
j

DItems
i

DItemsjD,iD
1

sim  (1)

Where |Items(Di)∩Items(Dj)| is the number of elements in the

set Items(Di)∩Items(Dj).

2) Definition: The similarity sim2(Di,Dj) is calculated

based on the set of items shared between the association rule

sets Si and Sj extracted from Di and Dj respectively.

)()()()()(
j

SItems
i

SItems
j

SItems
i

SItemsjD,iD2sim  (2)

The number of items involved in computing sim1 is more than

that of sim2. At a given minimum support and confidence

threshold values, an algorithm for association rule mining may

not extract any rule from a database. Hence, the accuracy of

sim1 is higher than that of sim2.
Based on the previous similarity measures, an algorithm,

BestClassification [4] has been proposed to search for the best
classification of a databases set D={D1,D2,…,Dn} minimizing
a certain goodness measure. The algorithm calls a procedure
Greedy Class to generate a complete classification,
class(D,sim,δ), for each similarity level δ (initially defined by
the user).

3) Defintion: Let class(D,sim,δ)={classδ
1, classδ

2,…,

classδ
k} be a classification of k clusters generated at a

similarity level δ. class(D,sim,δ) is complete if the following

properties are verified.

a) classδ
1 ∪ classδ

2∪…∪ classδ
k =D

b) For any two clusters classδ
l and classδ

h, l≠h,

classδ
l ∩ classδ

h= ∅

c) ∀ Di and Di in classδ
l, sim(Di,Dj)≥δ

d) ∀ Di ∊ classδ
l and Di ∊ classδ

h, l≠h, sim(Di,Dj) < δ

Different classifications could be obtained by varying the
similarity level δ. That’s why Wu X, Zhang C and Zhang S[4]
have proposed a goodness measure to evaluate each candidate
classification in order to select the best one.

4) Definition:The goodness value of class(D,sim,δ) is

defined as follows.

   




 k
l

ji

l
classjDiD

jDiDsimclassgoodness
1

δ
,

)),(1()δ,((3)

goodness describes the sum of distances (1–sim(Di,Dj))

between each database pair (Di,Dj) in each cluster. Smaller the

value of goodness, better is the classification.

5) Definition:To select the best complete classification, a

distance measure called distance(class, δ) is defined as

follows.

kclassgoodnessclassdistance )δ,()δ,((4)

Where k is the number of clusters in class(D,sim,δ). The

complete classification which gets the smallest value of

distance(class, δ) is selected as the best complete

classification under the similarity level δ.
The time complexity of the proposed algorithm is O(h×n4),

such that n is the database number and h is the number of
candidate classification generated before obtaining the best
classification. Although good experimental results are
obtained in [4] for certain similarity values, the time
complexity of the algorithm remains high and becomes severe
when the database number increases. Moreover, the proposed
algorithm fails to find the best classification when the step size
of searching λ is incorrectly initialized as shown in [5]. Also,
in some cases, the while-loop of the algorithm doesn’t
terminate and may generate an infinite loop without finding
any classification. The latter problem is due to the strong
dependence of the algorithm on the similarity step size which
is a user-input.

Motivated by the previous works, Li H, Hu X and Zhang Y
[5] have modified the algorithm BestClassification[4] in order
to optimize its time complexity and obtain correctly the best
complete classification of a set of n databases. Thus, the same
concepts (similarity and goodness measures) defined in [4]
have been used. In order to avoid missing the best
classification in case in which an incorrect step size has been
defined, the distinct similarity values between the n databases
are used as similarity levels to generate classifications. Thus,
for each distinct similarity value sorted in the increasing order,
a classification is produced. The proposed algorithm is optimal
when comparing to BestClassification[4]. Its time complexity
is O(h×n3), such that n is the database number and h ∈

 1, 𝑛2−𝑛

2
 is the number of classification produced before

obtaining the best classification.
The two algorithms above use the same similarity measure

sim1 [4] to cluster the multiple databases. Using a similarity
measure based on items might be useful to estimate the
correlation between large databases. In fact, extracting more
information such as frequent itemset and association rules
could be time consuming. However, sim1 produces low
accuracy in finding the correct similarity between two
databases. The reason is that two transactional databases
having many items in common are not necessarily similar.

In order to improve the accuracy of sim1 [4], A.Adhikari
and PR .Rao [6] have proposed a novel algorithm for multi-
database clustering using a more accurate similarity measure,
sim3, based on the support of frequent itemsets shared between
databases.

6) Definition : sim3 is defined as follows.

 

 







),(),((
),(),,(

),(),((
),(),,(

),(





jDFISiDFISx
jDxsuppiDxsuppmax

jDFISiDFISx
jDxsuppiDxsuppmin

jDiD3sim
(5)

Where α is the minimum support threshold, FIS(Di,α) denotes
the set of frequent itemsets reported from Di and supp(x,Di) is
the local support of x in Di.

For each database pair (Di,Dj), (1≤ i<j≤n), sim3(Di,Dj) is
computed and stored in a similarity table. As in [5], for each
distinct ordered similarity value δ, a classification πδ is
generated and evaluated as follows.

7) Definition : The following goodness measure is used to

assess each classification πδ.

kπinter_distπintra_simπgoodness δδδ )()()((6)

Where intra_sim(πδ) is the intra-cluster similarity and
inter_dist(πδ) is the inter-cluster distance and k is the number
of clusters.

8) Definition : The intra-cluster similarity of πδ is defined

as follows.

  







k

l

ji

classDD

ji3

δ

lji

DDsimπintra_sim
1 ,

),()(


 (7)

9) Definition : The inter-cluster distance of πδ is defined as

follows.

)),(1()(

, ,

 
 




hl

classclass

ji

classDclassD

ji3

δ

hl hjli

DDsim-πinter_dist
 

(8)

The best classification is selected based on maximizing
both the intra-cluster similarity and the inter-cluster distance.
Hence, higher the value of goodness, better is the clustering.
The proposed algorithm in [6] is optimal in terms of running
time. It takes O(m×n2) time to find the best classification, such

that n is the database number and m∈ 1, 𝑛2−𝑛

2
 is the number

of all candidate classifications. The experiments carried out in
[6] show that the proposed algorithm is effective and finds the
optimal classification only after examining few similarity
levels. However, the time complexity of the algorithm still
needs to be optimized.

In 2013, Yaqiong LIU, Dingrong YUAN and Yuwei CUAN
[7] have proposed a new algorithm for classifying databases
based on the same similarity measure proposed by A.Adhikari,
PR .Rao [6]. The proposed algorithm proceeds as follows.
Initially each class contains one database object. These classes
are created at level 1. Based on the classes of the level 1,
classes of the level 2 are formed by merging the i-th class
containing Di with the j-th class containing Dj only if sim3(Di,
Dj) ≥ δ. The algorithm continues further until no more class
can be generated.

The proposed algorithm generates all the possible classes
per level. It is simple but the clustering isn’t effective when
the database number increases. In fact, the time complexity of
the algorithm is exponential O(t×2𝑛×n) such that n is the
database number and t the distinct similarity values between
the n databases.

IV. IMPROVING EXISTING MDC APPROACHES

The efficiency of a MDC approach depends mainly on the
accuracy of its similarity measure and the time performance of
the classification algorithm. Hence, improving the later
parameters will lead to develop effective multi-database
systems. In the following sections, we present some
contributions to achieve our goals.

A. Enhancing the quality of the similarity measure

The similarity measure sim3 proposed by A.Adhikari, PR
.Rao in [6] has a certain limitation. In fact, the numerator of
sim3(Di,Dj) takes into account only the frequent itemset that
are shared between two databases Di and Dj and ignore
patterns supported by only one database. When a pattern X is
not frequent in Di, that is, X ∉ FIS(Di,α), this doesn’t mean
that X is not present at all in Di. It might be present with a
certain support value less than the minimum support threshold
α. Hence, X may be frequent when the two databases are
integrated and a mono-database mining is applied. Therefore,
we need to estimate the support of X in {Di∪Dj} in case in
which supp(X,Di)<α or supp(X,Dj)<α. To do so, we could use
the synthesizing model proposed in [8] as follows.

10) Definition : The estimated support of X in the union

{Di∪Dj} is defined as follows [8].

j
D

i
D

j
D

j
DXsupp

i
D

i
DXsupp

jis DDXsupp







),(),(

),((9)

Such that supp(X,Di) is the local support of X in Di. We note
by |Di| the number of transaction in Di.

Inspired by the works proposed by A.Adhikari and PR .Rao in
[6] and Ramkumar T, Srinivasan R in [8], we present the
following similarity measure.

11) Definition : Let Di and Dj be two transactional

databases and 𝛼 the minimum support value. sim4(Di,Dj) is

defined as follows.

 

 









)),(),((
),(),,(

)),(),((
,,Φ

),(

αjDFISαiDFISx
jDxsuppiDxsuppmax

αjDFISαiDFISx
αx

jDiDsim

ji

4

DD

 (10)

such that,

 

















otherwise,0

),(),(

,,Φ
j

D
i

DX
s

 suppif ,
j

D
i

DX
s

supp

x ji DD (11)

The similarity function, sim4, calculates the relevance
between two databases based on the synthesized supports of
the frequent itemsets obtained when the databases are mined
together. The synthesized support of a frequent itemset
represents the estimation of its real support obtained in case in
which databases are integrated and a mono-database mining is
applied. Thus, sim4 will contribute to select the correct
databases to analyze in order to enhance the quality of the
discovered patterns.

Example : Let Di and Dj be two databases , each of which
has 10 transactions. Let the minimum support value be α=0.2.
Then, the frequent itemsets obtained from each database are as
follows.

FIS(Di,α)={supp(A,Di)=0.5,supp(B,Di)=0.4,supp(C,Di)=0.2}

FIS(Dj,α)={supp(C,Dj)=0.3}

We observe that A and B are not present in FIS(Dj,α) because
their support values are less than α, with supp(A,Dj)=0.1 and
supp(B,Dj)=0.1.

Let’s calculate the similarity between Di and Dj using the

measure proposed in [6] : sim3(Di,Dj)=
0+0+0.2

0.5+0.4+0.3
= 0.167

Now, by using our similarity measure we get the following

result : sim4(Di,Dj)=
5+0

20
+

4+0

20
+

3+2

20

0.5+0.4+0.3
=

0.25+0.20+0.25

0.5+0.4+0.3
= 0.58

The similarity measure proposed by A.Adhikari, PR .Rao in
[6] has not taken into account the support value of A and B in
Dj because (supp(A,Dj)< α and supp(B,Dj)<α), consequently
sim3(Di,Dj) is too low. However, patterns A and B will be
frequent when the two databases Di and Dj are integrated and a
frequent-itemset discovery is applied on the union {Di ∪ Dj}.
In fact, the real support values of A and B in {Di ∪ Dj} are
calculated as follows : supp(A, {Di∪Dj})=(5+1)/20=0.3,
supp(B, {Di ∪ Dj})=(4+1)/20=0.25. The values estimated in
the numerator of our measure are close to the real values, with
supps(A, {Di ∪ Dj})=(5+0)/20=0.25 and supps(B,
{Di∪Dj})=(4+0)/20=0.20. Consequently, our similarity
measure returns more accurate results.

sim4, could be improved further more by using the correction
factor h proposed in [9]. In fact, we could estimate the local
support of X in Di when supp(X,Di)<α as follows.

12) Definition : The local support of X in Di could be

obtained as follows.











 


otherwise

i
DX, supp

i
DX suppif , × h

iDX,supp
),(

α),(α

)((12)

Where ℎ ∈ [0,1] and α is the minimum support threshold

value. Choosing an appropriate correction factor h is related to

the data distributed in the database. More the subsets of X are

frequent with a high support value, higher is the probability to

see them appearing together and hence, h must be chosen

close to 1 in this case. In the absence of such information,

setting h=0.5 is a suitable choice. In the previous example, we

could estimate the support of A and B in Dj by applying a

correction factor h=0.5. Consequently, the following results

are obtained : supp(A,Dj)=supp(B,Dj)=0.5×0.2=0.1 ,which is

exactly the real support value of A and B in Dj. Therefore, a

new value of sim4 is obtained too as follows :

sim4(Di,Dj)=
5+1

20
+

4+1

20
+

3+2

20

0.5+0.4+0.3
= 0.66. As we can notice, our

similarity measure indicates that Di and Dj are relevant (with a

similarity value above than 50%) since all the frequent

itemsets from {FIS(Di,α) ∪ FIS(Dj,α)} will be frequent in case

the two databases are integrated into one dataset and a mono-

database technique is applied. Consequently, it is appropriate

to put Di and Dj into the same cluster and analyze them

together to improve the quality of the discovered patterns.

B. Improving the time performance

According to the study presented in Section III, existing
classification algorithms [4-7] generate hierarchical
classifications that verify the following property.

13) Property: Let class(D,sim,δi) and class(D,sim,δj) be two

candidate classifications of D={D1,D2,…,Dn} generated at two

consecutive similarity level δi and δj.Then, for each cluster gx

in class(D,sim,δi), there is certainly a cluster gy in class(D,sim,

δj), such that gx⊂gy

Despite of the latter property, the existing algorithms
produce each classification independently, that is, instead to
use the earlier clusters (e.i., generated in the previous
classifications) to build the clusters of the next classification,
they generate each classification starting from the initial state
where each database forms one cluster {D1},{D2},…,{Dn}.
Consequently the existing algorithms are time consuming and
do unnecessary work.

The above observations motivated us to design an
improved MDC approach that overcomes the later problems
as follows. We assume that each database has been mined
using a fast algorithm for frequent itemset discovery [11]. Let
D={D1,D2,…,Dn} be the set of n transactional database objects
to classify, then the problem of generating a classification
class(D,sim,δ) at a similarity level δ, can be described in terms
of determining the connected components of an undirected
weighted graph G=(D,E). We consider the database set
D={D1,D2,…,Dn} as the vertex set of G and E the edge set.
The weight of an edge (Di,Dj) ∈E is the similarity value
between the corresponding databases sim4(Di,Dj). At a certain
similarity level δ, there is an edge connecting two vertices Di

and Dj if sim4(Di,Dj) ≥δ.
Initially, the graph G=(D,E) is empty with n disconnected

vertices ,i.e, E=∅. Then, similarities are calculated between
each vertex pairs (Di,Dj) using the similarity measure sim4, for
i,j=1 to n. After that, edges are added to E starting with the
vertex pairs having the highest similarity as follows. Let
δ1,δ2,…,δm be the m distinct similarity values between the n
databases sorted in the decreasing order (e.i., δ1>δ2>…>δm)
and let Eδl={(Di,Dj)∈E, sim4(Di,Dj)= δl, i,j=1 to n, i≠j} be the
list of edges with weight value equal to δl(l=1 to m). For each
distinct similarity value δl, a candidate classification
class(D,sim,δl) is generated by adding the edge list Eδl to the
edge set E such that E=Eδ1∪Eδ2∪…∪Eδl-1.Then, it remains to
identify the connected component of G in order to discover the
database clusters in class(D,sim,δl).

To determine and maintain the connected component of G,
we use a modified version of the disjoint-forest data structure
[12]. We have presented the classification algorithm and data
structures in details on another paper [13].

At a given similarity level δl, if each connected component
of G, denoted 𝑔𝛿𝑙

k forms a clique (e.i., a subset of vertices,
each pair of which is connected by an edge in E), then the
corresponding classification class(D,sim, δl)={𝑔𝛿𝑙

1, 𝑔𝛿𝑙
2,…,

𝑔𝛿𝑙
k} is called a complete classification . For classification

assessment, we use the goodness measure proposed in [6]. The
complete classification with the maximum goodness value is
selected as the best classification of the database set. Our
classification approach is depicted in Fig. 1.

Fig. 1. Proposed approach for classifying the n multiple databases

C. Performance Analysis

To find the best classification of the n multiple databases,

our algorithm implementing the proposed approach examines

once all the m edge lists Eδ to generate and evaluate m

candidate classifications. The average size of each edge list is

n2/m. Therefore, exploring all the m edge lists by our

algorithm takes O(n2) time. Consequently, the proposed

algorithm is optimal when comparing with

BestDatabasePartition[6], which takes O(m×n2) time to find

the best classification of the n multiple databases such that

m ∈ 1, 𝑛2−𝑛

2
 . To assess the performance of our approach, we

have conducted some experiments to compare the execution

time obtained by BestDatabasePartition[6] and our graph-

based classification algorithm. All the experiments have been

implemented on a 2.70 GHz Pentium processor with 2 GB of

l=l+1(Next

classification)

No

Yes

No

Compute δ =sim4(Di,Dj)

for i=1 to n-1, j=i+1 to n

Start :

Set G=(D,E) , D= {Di}
n
i=1 , E=∅

Let Eδl ={(Di, Dj) ∈E, sim(Di,Dj)= δl}

E=E ∪ Eδl

Stop :Output

class(D,sim, δl))

Sort distinct similarity values

as follows : δ1>δ2>…>δm

Let class(D,sim, δl)={gδl
1,g

δl
2 ,…, gδl

k}

Compute goodness(class(D,sim, δl))

Is each connected

component gδl ⊆ G a

clique?

l=1 (First Classification)

𝑙 ≤ 𝑚

Yes

No

is goodness(class(D,sim, δl)) the

maximum value found so far?

Save class(D,sim, δl)

Yes

0

0,002

0,004

0,006

0,008

0,01

0,03 0,04 0,05 0,06

C
la

ss
if

ic
at

io
n

 E
x

ec
u

ti
o

n

T
im

e
(s

)

minsupp (α) with n=10

BestDatabasePartition (T4,1, ,…,T4,10)
Proposed Algorithm (T4,1, ,…,T4,10)
BestDatabasePartition (T1,1, ,…,T1,10)
Proposed Algorithm (T1,1, ,…,T1,10)

0

0,002

0,004

0,006

0,008

0,01

0,012

0,014

0,016

0,018

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

C
la

ss
if

ic
at

io
n

 E
x

ec
u

ti
o

n

T
im

e
(s

)

of Databases with α=0.03

BestDatabasePartition (T4,3 ,…, T4,n)
Proposed Algorithm (T4,3 ,…, T4,n)
BestDatabasePartition (T1,3 ,…, T1,n)
Proposed Algorithm (T1,3 ,…, T1,n)

memory, using JAVA Edition 6. We carried out the

experiments using two synthetic datasets T10I4D100K and

T40I10D100K available in: http://fimi.ua.ac.be/data. For

multi-database mining, each of the datasets is divided

horizontally into 10 and 20 databases. The multiple databases

obtained from T10I4D100K and T40I10D100K are referred to

as T1,1, T1,2, …, T1,n and T4,1, T4,2, …, T4,n respectively, such

that n=10, 20. By varying the value of the minimum support

threshold, minsupp(α), we get different sets of frequent

itemsets using FP-Growth algorithm [11]. Once the data-

preparation done, we classify the multi-databases using our

algorithm and BestDatabasePartition[6].

1) First study :In the first part of our experiments, we

analyze the impact of minsupp(α) on the classification

execution time. Therefore, we set the number of databases

n=10 and we varied the value of α to get different sets of

frequents itemsets. Then, we executed our algorithm and

BestDatabasePartition on the same multiple database set. The

execution times are presented in Fig. 2. From the experiment

results, we observe that the execution time is relatively

constant for the two algorithms, as the value of α increases.

Fig. 2. Execution time versus minsupp

The reason is that n and the number of candidate classification

m didn’t change during the experiments (n=10, m=45).

However, we notice that the classification time of our

algorithm is shorter than that of BestDatabasePartition for

α=0.03 to 0.06.

2) Second study :In the second part of our experiments,

we studied how the number of databases n and the number of

candidate classification m influence the time complexity of

the two algorithms. Hence, we set the value of minuspp

α=0.03 and we varied n from 3 to 20 databases. The

experiment results obtained by the two algorithms are

presented in Fig. 3

Fig. 3. Execution time versus the number of databases.

From the experiment results, we can see that the execution

time tend go higher, as the value of n increases. However, we

notice that the classification time increases faster for

BestDatabasePartition. The reason is that m becomes larger

as the value of n increases. Since the time complexity of

BestDatabasePartition depends strongly on m, we note a rapid

increase of BestDatabasePartition’s execution time for n=3 to

20. According to the above experiment results, our algorithm

is the fastest. This is because, unlike the existing works[4-7],

the time complexity of our algorithm depends only on the

number of databases and takes O(n2) time to explorer all the m

edge lists and find the best classification of the n multi-

databases.

V. CONCLUSION AND FUTURE WORK

Multi-database classification (MDC) approaches have been
improved from based on a given application to independent-
application. In this paper, we have discussed the existing
MDC approaches by presenting their advantages and point out
their limitations. Inspired by the existing works, we have
proposed an improved approach to enhance the similarity
measure and optimize the time performance of the existing
classification algorithms. Experimental results have confirmed
the efficiency of the proposed algorithm. Future work will be
directed toward assessing our algorithm using real-world
datasets and validate the tests on a real multi-databases
system.

REFERENCES

[1] Zhang, S., Zaki, M.J, “Mining multiple data sources: local pattern
analysis,” Data Mining and Knowledge Discovery. Springer, pp. 121–
125, 2006.

[2] Zhang, S., Wu, X., Zhang, C, “Multi-database mining ,” IEEE Comput.
Intell. Bull. 2 (1), 5–13, 2003.

[3] Zhang S, Zhang C,Wu X, Knowledge discovery in multiple databases.
Springer, New York, 2004.

[4] Wu X, Zhang C, Zhang S, “Database classification for multi-database
mining ,” Information Systems 30(1): 71–88, 2005.

[5] Li H, Hu X, Zhang Y, “An improved database classification algorithm
for multi-database mining,” in: Proceedings of the 3d International
Workshop on Frontiers in Algorithmics, Springer, Berlin/Heidelberg, pp.
346–357 ,2009.

[6] A.Adhikari, PR .Rao, “Efficient clustering of databases induced by local
patterns,” Decision Support Systems 44(4):925–943, 2007.

[7] Yaqiong LIU, Dingrong YUAN, Yuwei CUAN, “Completely clustering
for multi-databases mining,” Journal of Computational Information
Systems 9: 16, 2013.

[8] Ramkumar T, Srinivasan R, “Modified algorithm for synthesizing high-
frequency rules from different data sources ,” Knowledge and
Information System 17(3) :313-334,2008.

[9] Thirunavukkarasu, R., Rengaramanujam, Srinivasan, “The Effect of
Correction Factor in Synthesizing Global Rules in a Multi-databases
Mining Scenario,” Journal of computer science, 6(3): (2009).

[10] H. Liu, H. Lu, J. Yao, “Toward multi-database mining: identifying
relevant databases,” IEEE Trans. Knowledge Data Eng. 541–553,2001.

[11] Jiawi Han, Jina Pei, Yiwen Yin, Runying Mao, "Mining frequent
patterns without candidate generation: a frequent-pattern tree
approach," Data Mining and Knowledge Discovery, pp. 53-87, 2000.

[12] T.H. Cormen, C.E. Leiserson, R.L. Rivest, Introduction to algorithms.
Cambridge, MA: MIT Press, 1990.

[13] Miloudi. S, Rahal S.A, Khiat. S, “Contribution to improve database
classification algorithms for multi-Database mining,” unpublished.

