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Abstract— For business decision making purpose, multi-

branch companies may need to mine their databases distributed 

through their branches in order to extract useful information 

called patterns. Traditional data mining techniques integrate all 

the data from these databases to amass a huge dataset for pattern 

discovery. However, this approach may generate an expensive 

search cost for centralized processing and might disguise some 

important patterns. To deal with the latter problems, we may 

need to classify the multiple databases into clusters of similar 

databases. Each cluster could be analyzed individually to 

discover new patterns reflecting specific information about each 

group of branches. Inspired by the existing works, this paper 

presents an improved multi-database classification (MDC) 

approach which enhances the quality of the patterns mined from 

the databases and optimizes the time complexity of the 

classification algorithm. 

Keywords— Multi-database classification (MDC); Database 

clustering; Database selection; Relevance factor;Similarity 

measure; Goodness measure; Pattern Analysis; Frequent-itemsets; 

Association rules 

I. INTRODUCTION 

Large organizations have different types of business 
distributed through their branches and each branch may have 
its own database which collects continuously transactions 
from customers. For analyzing purpose, it is important to mine 
these multiple databases to discover new patterns (e.i., 
frequent itemsets and association rules) useful for the decision 
making process. Traditional data mining techniques known as 
mono-database mining [1-3] integrate all the data from these 
databases to form one dataset for knowledge discovery. 
Nevertheless, this process may accumulate a huge database for 
centralized processing and may hide some important patterns 
reflecting the characteristics of the branches. For example, a 
pattern such as “75% of the branches in certain regions 
observe that 30% of coffee’s purchases imply also the 
purchase of sugar” cannot be discovered by using the mono-
database mining. In addition, it’s not always obvious to 
integrate all the data from the multiple databases due to the 
data privacy and data irrelevancy issues. To overcome the 
latter problems, we need to identify the groups of databases 
that enhance the quality of the patterns discovered when they 
are mined together. This approach is referred to as the multi-
database classification (MDC), which aims to classify the 
multiple databases into disjoint clusters sharing common 

features. For example, if a large company has 10 branches 
including 5 branches for household appliances, 3 branches for 
clothing and 2 branches for food, we cannot apply existing 
data mining techniques over the union of the 10 branch 
databases. We might lose the data distribution. That’s why, we 
need to classify them into 3 clusters according to their type of 
business, and then we could analyze each database cluster 
individually. Consequently, mining the multiple databases 
becomes more manageable.  Few MDC algorithms have been 
proposed in the literature [4-7]. They differ in (1) the 
similarity measure used to identify the relevant databases, (2) 
the goodness measure used to assess the classification and (3) 
the execution time taken to find the best classification. The 
accuracy of a MDC algorithm is highly determined by the 
similarity measure used to calculate the relevance between 
databases. In the work proposed by A.Adhikari and PR 
.Rao[9], more the number of frequent itemsets shared between 
databases is large, more cohesive are the clusters discovered. 
However, existing algorithms in [4-7] neglect some infrequent 
itemsets, which are not supported by a certain databases (e.i, 
their support values are less than the user-defined threshold), 
but these itemsets may become frequent when the databases 
are merged and a traditional data mining technique is applied.  
In this paper, we propose an improved similarity measure 
based on maximizing the number of frequent itemset 
discovered by the multi-database mining process [1-3]. Thus, 
only relevant databases that generate more frequent itemsets 
are put into the same cluster. To do so, we use the 
synthesizing model proposed in [8] combined with the 
correction factor defined in [9] to estimate the support of a 
frequent itemset in the union of two databases. In the other 
hand, we improve the time complexity of the classification 
algorithm by proposing a graph-based classification approach 
which represents the similar databases as a set of vertices each 
pair of which is connected by an edge. The experiments 
carried on public databases show the efficiency of our 
approach against the existing works. 

The rest of the paper is organized as follows.  Section  II  
presents in details the existing MDC approaches proposed in 
the literature. Section III discusses and compares the different 
MDC algorithms. In Section IV, we present our contribution 
to improve the existing works and Section V concludes the 
discussion and highlights the future works. 
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II. PRESENTATION OF THE MDC APPROACHES  

In the literature, we distinguish two categories of MDC 
approaches according to whether they are dependent or 
independent application. In this paper, we focus on studying 
the independent application approaches. 

A. Dependent-application Approach for MDC 

A dependent-application strategy for MDC, referred to as 
database-selection [10], aims to identify databases which are 
relevant to a certain user-request denoted Q. The authors H. 
Liu, H. Lu and J. Yao [10] have proposed a relevance factor 
RF, to measure the deviation between Q and the attributes of a 
relational table. The time complexity of the proposed 
algorithm is O(m×N×M) times, such that N and M are the 
maximum number of records and attributes in the m databases 
respectively. Obviously, for large databases, the time 
complexity is going to increase significantly.  

Database selection represents a feasible way to avoid 
joining irrelevant databases with the relevant ones and then it 
reduces the search space to explore and enhances the quality 
of the patterns discovered with the reference to the user-
request. However, for real world applications, this method 
cannot be applied when the multiple databases are mined 
without specifying a user application.  Moreover, due to the 
privacy issue, some branches may refuse to share their original 
row data.  In this case, database selection isn’t appropriate 
since it requires a direct access to the records of each database. 
The problems above motivated many authors to design a new 
MDC algorithms independent-application [4-7] to deal with 
the limitations of the dependent-application approach. 

B. Independent-application Approach for MDC 

Given a set of n databases D={D1,D2,…,Dn} corresponding 

to the n branches of an inter-state company, an independent-

application classification strategy is referred to as database 

clustering, which aims to search for the best classification of  

the n databases without specifying any application. To do so, 

existing MDC algorithms proposed in [4-7] generate m∈

 1, 𝑛2−𝑛

2
  candidate classifications incrementally until finding 

the best classification which optimizes a certain goodness 

measure. In general, an MDC algorithm performs as follows: 

 
a) Build a similarity matrix of size n×n using a similarity 

measure sim. In Section III, we present some similarity 
measures. 

b) For each distinct similarity value δ listed in a sorted order, 
a candidate classification class(D,sim,δ) is generated such 
that two database Di and Dj are put in the same cluster if 
sim(Di,Dj) ≥ δ. In [4], each similarity level δ is selected 
based on a step value λ given initially by the user. 

c) Evaluate each candidate classification using a quality 
measure goodness.  

In the following section, we present a comparative study of the 
different MDC algorithms proposed in the literature. 

III. DISCUSSING AND COMPARING EXISTING MDC 

ALGORITHMS 

The authors Wu X, Zhang C and Zhang S in [4] were the 
first to propose a new approach independent-application for 
classifying transactional databases. Thus, two similarity 
measures, sim1 and sim2 have been proposed to group similar 
databases into disjoint clusters without specifying any 
application.  

1) Definition: The similarity sim1(Di,Dj) is computed 

based on the set of items shared between two transactional 

databases Di and Dj and it is defined as follows. 
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sim  (1) 

Where |Items(Di)∩Items(Dj)| is the number of elements in the 

set Items(Di)∩Items(Dj). 

 

2) Definition: The similarity sim2(Di,Dj) is calculated 

based on the set of items shared between the association rule 

sets Si and Sj extracted from Di and Dj respectively. 
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The number of items involved in computing sim1 is more than 

that of sim2. At a given minimum support and confidence 

threshold values, an algorithm for association rule mining may 

not extract any rule from a database. Hence, the accuracy of 

sim1 is higher than that of sim2. 
Based on the previous similarity measures, an algorithm, 

BestClassification [4] has been proposed to search for the best 
classification of a databases set D={D1,D2,…,Dn}  minimizing 
a certain goodness measure. The algorithm calls a procedure 
Greedy Class to generate a complete classification, 
class(D,sim,δ), for each similarity level δ (initially defined by 
the user).  

3) Defintion: Let class(D,sim,δ)={classδ
1, classδ

2,…, 

classδ
k} be a classification of k clusters generated at a 

similarity level δ. class(D,sim,δ) is complete if the following 

properties are verified. 

a) classδ
1 ∪ classδ

2∪…∪ classδ
k =D 

b) For any two clusters classδ
l and classδ

h, l≠h,  

classδ
l ∩ classδ

h= ∅ 

c) ∀ Di and Di in classδ
l, sim(Di,Dj)≥δ 

d) ∀ Di ∊ classδ
l and Di ∊ classδ

h, l≠h, sim(Di,Dj) < δ 

Different classifications could be obtained by varying the 
similarity level δ. That’s why Wu X, Zhang C and Zhang S[4] 
have proposed a goodness measure to evaluate each candidate 
classification in order to select the best one.  

4) Definition:The goodness value of class(D,sim,δ) is 

defined as follows. 
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goodness describes the sum of distances (1–sim(Di,Dj)) 

between each database pair (Di,Dj) in each cluster. Smaller the 

value of goodness, better is the classification.  

 

5) Definition:To select the best complete classification, a 

distance measure called distance(class, δ) is defined as 

follows. 

 

 
kclassgoodnessclassdistance  )δ,()δ,(  (4)  

 

Where k is the number of clusters in class(D,sim,δ). The 

complete classification which gets the smallest value of 

distance(class, δ) is selected as the best complete 

classification under the similarity level δ. 
The time complexity of the proposed algorithm is O(h×n4), 

such that n is the database number and h is the number of 
candidate classification generated before obtaining the best 
classification. Although good experimental results are 
obtained in [4] for certain similarity values, the time 
complexity of the algorithm remains high and becomes severe 
when the database number increases. Moreover, the proposed 
algorithm fails to find the best classification when the step size 
of searching λ is incorrectly initialized as shown in [5]. Also, 
in some cases, the while-loop of the algorithm doesn’t 
terminate and may generate an infinite loop without finding 
any classification. The latter problem is due to the strong 
dependence of the algorithm on the similarity step size which 
is a user-input. 

Motivated by the previous works, Li H, Hu X and Zhang Y 
[5] have modified the algorithm BestClassification[4] in order 
to optimize its time complexity and obtain correctly the best 
complete classification of a set of n databases. Thus, the same 
concepts (similarity and goodness measures) defined in [4] 
have been used. In order to avoid missing the best 
classification in case in which an incorrect step size has been 
defined, the distinct similarity values between the n databases 
are used as similarity levels to generate classifications. Thus, 
for each distinct similarity value sorted in the increasing order, 
a classification is produced. The proposed algorithm is optimal 
when comparing to BestClassification[4]. Its time complexity 
is O(h×n3), such that n is the database number and h ∈

 1, 𝑛2−𝑛

2
  is the number of classification produced before 

obtaining the best classification.  
The two algorithms above use the same similarity measure 

sim1 [4] to cluster the multiple databases. Using a similarity 
measure based on items might be useful to estimate the 
correlation between large databases. In fact, extracting more 
information such as frequent itemset and association rules 
could be time consuming. However, sim1 produces low 
accuracy in finding the correct similarity between two 
databases. The reason is that two transactional databases 
having many items in common are not necessarily similar. 

In order to improve the accuracy of sim1 [4], A.Adhikari 
and PR .Rao [6] have proposed a novel algorithm for multi-
database clustering using a more accurate similarity measure, 
sim3, based on the support of frequent itemsets shared between 
databases.  

6) Definition : sim3 is defined as follows. 
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Where α is the minimum support threshold, FIS(Di,α) denotes 
the set of frequent itemsets reported from Di and supp(x,Di) is 
the local support of x in Di.  

For each database pair (Di,Dj), (1≤ i<j≤n), sim3(Di,Dj) is 
computed and stored in a similarity table. As in [5], for each 
distinct ordered similarity value δ, a classification πδ is 
generated and evaluated as follows. 

7) Definition : The following goodness measure is used to 

assess each classification πδ. 

kπinter_distπintra_simπgoodness δδδ  )()()(  (6) 

Where intra_sim(πδ) is the intra-cluster similarity and 
inter_dist(πδ) is the inter-cluster distance and k is the number 
of clusters. 

8) Definition : The intra-cluster similarity of πδ is defined 

as follows. 
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9) Definition : The inter-cluster distance of πδ is defined as 

follows. 

 
)),(1()(

, ,

 
 




hl

classclass

ji

classDclassD

ji3

δ

hl hjli

DDsim-πinter_dist
 

(8) 

The best classification is selected based on maximizing 
both the intra-cluster similarity and the inter-cluster distance. 
Hence, higher the value of goodness, better is the clustering. 
The proposed algorithm in [6] is optimal in terms of running 
time. It takes O(m×n2) time to find the best classification, such 

that n is the database number and  m∈  1, 𝑛2−𝑛

2
  is the number 

of all candidate classifications. The experiments carried out in 
[6] show that the proposed algorithm is effective and finds the 
optimal classification only after examining few similarity 
levels. However, the time complexity of the algorithm still 
needs to be optimized.  

In 2013, Yaqiong LIU, Dingrong YUAN and Yuwei CUAN 
[7] have proposed a new algorithm for classifying databases 
based on the same similarity measure proposed by A.Adhikari, 
PR .Rao [6]. The proposed algorithm proceeds as follows. 
Initially each class contains one database object. These classes 
are created at level 1. Based on the classes of the level 1, 
classes of the level 2 are formed by merging the i-th class 
containing Di with the j-th class containing Dj only if sim3(Di, 
Dj) ≥ δ. The algorithm continues further until no more class 
can be generated. 

The proposed algorithm generates all the possible classes 
per level. It is simple but the clustering isn’t effective when 
the database number increases. In fact, the time complexity of 
the algorithm is exponential O(t×2𝑛×n)  such that n is the 
database number and t the distinct similarity values between 
the n databases. 



IV. IMPROVING EXISTING MDC APPROACHES 

The efficiency of a MDC approach depends mainly on the 
accuracy of its similarity measure and the time performance of 
the classification algorithm. Hence, improving the later 
parameters will lead to develop effective multi-database 
systems. In the following sections, we present some 
contributions to achieve our goals. 

A. Enhancing the quality of the similarity measure 

The similarity measure sim3 proposed by A.Adhikari, PR 
.Rao in [6] has a certain limitation. In fact, the numerator of 
sim3(Di,Dj) takes into account only the frequent itemset that 
are shared between two databases Di and Dj and ignore 
patterns supported by only one database. When a pattern X is 
not frequent in Di, that is, X ∉ FIS(Di,α), this doesn’t mean 
that X is not present at all in Di. It might be present with a 
certain support value less than the minimum support threshold 
α. Hence, X may be frequent when the two databases are 
integrated and a mono-database mining is applied. Therefore, 
we need to estimate the support of X in {Di∪Dj} in case in 
which supp(X,Di)<α or supp(X,Dj)<α. To do so, we could use 
the synthesizing model proposed in [8] as follows. 

10) Definition : The estimated support of X in the union 

{Di∪Dj} is defined as follows [8]. 
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Such that supp(X,Di) is the local support of X in Di. We note 
by |Di| the number of transaction in Di. 
 
Inspired by the works proposed by A.Adhikari and PR .Rao in 
[6] and Ramkumar T, Srinivasan R in [8], we present the 
following similarity measure.  

11) Definition : Let Di and Dj be two transactional 

databases and 𝛼 the minimum support value. sim4(Di,Dj) is 

defined as follows. 
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such that, 
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The similarity function, sim4, calculates the relevance 
between two databases based on the synthesized supports of 
the frequent itemsets obtained when the databases are mined 
together. The synthesized support of a frequent itemset 
represents the estimation of its real support obtained in case in 
which databases are integrated and a mono-database mining is 
applied. Thus, sim4 will contribute to select the correct 
databases to analyze in order to enhance the quality of the 
discovered patterns. 

Example : Let Di and Dj be two databases , each of which 
has 10 transactions. Let the minimum support value be α=0.2. 
Then, the frequent itemsets obtained from each database are as 
follows. 

FIS(Di,α)={supp(A,Di)=0.5,supp(B,Di)=0.4,supp(C,Di)=0.2} 

FIS(Dj,α)={supp(C,Dj)=0.3} 

We observe that A and B are not present in FIS(Dj,α) because 
their support values are less than α, with supp(A,Dj)=0.1 and 
supp(B,Dj)=0.1.  

Let’s calculate the similarity between Di and Dj using the 

measure proposed in [6] : sim3(Di,Dj)=
0+0+0.2

0.5+0.4+0.3
= 0.167 

Now, by using our similarity measure we get the following 

result : sim4(Di,Dj)=
5+0

20
+

4+0

20
+

3+2

20

0.5+0.4+0.3
=

0.25+0.20+0.25

0.5+0.4+0.3
= 0.58 

The similarity measure proposed by A.Adhikari, PR .Rao in 
[6] has not taken into account the support value of A and B in 
Dj because (supp(A,Dj)< α and supp(B,Dj)<α), consequently  
sim3(Di,Dj) is too low. However, patterns A and B will be 
frequent when the two databases Di and Dj are integrated and a 
frequent-itemset discovery is applied on the union {Di ∪ Dj}. 
In fact, the real support values of A and B in {Di ∪ Dj} are 
calculated as follows : supp(A, {Di∪Dj})=(5+1)/20=0.3, 
supp(B, {Di ∪ Dj})=(4+1)/20=0.25. The values estimated in 
the numerator of our measure are close to the real values, with 
supps(A, {Di ∪ Dj})=(5+0)/20=0.25 and supps(B, 
{Di∪Dj})=(4+0)/20=0.20. Consequently, our similarity 
measure returns more accurate results. 

sim4, could be improved further more by using the correction 
factor h proposed in [9]. In fact, we could estimate the local 
support of X in Di when supp(X,Di)<α as follows. 

12) Definition : The local support of X in Di could be 

obtained as follows. 
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Where ℎ ∈ [0,1] and α is the minimum support threshold 

value. Choosing an appropriate correction factor h is related to 

the data distributed in the database. More the subsets of X are 

frequent with a high support value, higher is the probability to 

see them appearing together and hence, h must be chosen 

close to 1 in this case. In the absence of such information, 

setting h=0.5 is a suitable choice. In the previous example, we 

could estimate the support of A and B in Dj by applying a 

correction factor h=0.5. Consequently, the following results 

are obtained : supp(A,Dj)=supp(B,Dj)=0.5×0.2=0.1 ,which is 

exactly the real support value of A and B in Dj.  Therefore, a 

new value of sim4 is obtained too as follows :  

sim4(Di,Dj)=
5+1

20
+

4+1

20
+

3+2

20

0.5+0.4+0.3
= 0.66. As we can notice, our 

similarity measure indicates that Di and Dj are relevant (with a 

similarity value above than 50%) since all the frequent 

itemsets from {FIS(Di,α) ∪ FIS(Dj,α)} will be frequent in case 



the two databases are integrated into one dataset and a mono-

database technique is applied. Consequently, it is appropriate 

to put Di and Dj into the same cluster and analyze them 

together to improve the quality of the discovered patterns. 

B. Improving the time performance 

According to the study presented in Section III, existing 
classification algorithms [4-7] generate hierarchical 
classifications that verify the following property.  

13) Property: Let class(D,sim,δi) and class(D,sim,δj) be two 

candidate classifications of D={D1,D2,…,Dn} generated at two 

consecutive similarity level δi and δj.Then, for each cluster gx 

in class(D,sim,δi), there is certainly a cluster gy in class(D,sim, 

δj), such that gx⊂gy 

Despite of the latter property, the existing algorithms 
produce each classification independently, that is, instead to 
use the earlier clusters (e.i., generated in the previous 
classifications) to build the clusters of the next classification, 
they generate each classification starting from the initial state 
where each database forms one cluster {D1},{D2},…,{Dn}. 
Consequently the existing algorithms are time consuming and 
do unnecessary work.  

The above observations motivated us to design an 
improved  MDC approach that overcomes the later problems 
as follows. We assume that each database has been mined 
using a fast algorithm for frequent itemset discovery [11]. Let 
D={D1,D2,…,Dn} be the set of n transactional database objects 
to classify, then the problem of generating a classification 
class(D,sim,δ) at a similarity level δ, can be described in terms 
of determining the connected components of an undirected 
weighted graph G=(D,E). We consider the database set 
D={D1,D2,…,Dn} as the vertex set of G and E the edge set. 
The weight of an edge (Di,Dj) ∈E is the similarity value 
between the corresponding databases sim4(Di,Dj). At a certain 
similarity level δ, there is an edge connecting two vertices Di 

and Dj if sim4(Di,Dj) ≥δ.  
Initially, the graph G=(D,E) is empty with n disconnected 

vertices ,i.e, E=∅. Then, similarities are calculated between 
each vertex pairs (Di,Dj) using the similarity measure sim4, for 
i,j=1 to n. After that, edges are added to E starting with the 
vertex pairs having the highest similarity as follows. Let 
δ1,δ2,…,δm be the m distinct similarity values between the n 
databases sorted in the decreasing order (e.i., δ1>δ2>…>δm) 
and let Eδl={(Di,Dj)∈E, sim4(Di,Dj)= δl, i,j=1 to n, i≠j} be the 
list of edges with weight value equal to δl(l=1 to m). For each 
distinct similarity value δl, a candidate classification 
class(D,sim,δl) is generated by adding the edge list Eδl to the 
edge set E such that E=Eδ1∪Eδ2∪…∪Eδl-1.Then, it remains to 
identify the connected component of G in order to discover the 
database clusters in class(D,sim,δl).  

To determine and maintain the connected component of G, 
we use a modified version of the disjoint-forest data structure 
[12]. We have presented the classification algorithm and data 
structures in details on another paper [13].  

At a given similarity level δl, if each connected component 
of G, denoted 𝑔𝛿𝑙

k forms a clique (e.i., a subset of vertices, 
each pair of which is connected by an edge in E), then the 
corresponding classification class(D,sim, δl)={𝑔𝛿𝑙

1, 𝑔𝛿𝑙
2,…, 

𝑔𝛿𝑙
k} is called a complete classification . For classification 

assessment, we use the goodness measure proposed in [6]. The 
complete classification with the maximum goodness value is 
selected as the best classification of the database set. Our 
classification approach is depicted in Fig. 1.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. Proposed approach for classifying the n multiple databases 

C. Performance Analysis 

To find the best classification of the n multiple databases, 

our algorithm implementing the proposed approach examines 

once all the m edge lists Eδ to generate and evaluate m 

candidate classifications. The average size of each edge list is 

n2/m. Therefore, exploring all the m edge lists by our 

algorithm takes O(n2) time. Consequently, the proposed 

algorithm is optimal when comparing with 

BestDatabasePartition[6], which takes O(m×n2) time to find 

the best classification of the n multiple databases such that 

m ∈  1, 𝑛2−𝑛

2
 . To assess the performance of our approach, we 

have conducted some experiments to compare the execution 

time obtained by BestDatabasePartition[6] and our graph-

based classification algorithm. All the experiments have been 

implemented on a 2.70 GHz Pentium processor with 2 GB of 
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memory, using JAVA Edition 6. We carried out the 

experiments using two synthetic datasets T10I4D100K and 

T40I10D100K available in: http://fimi.ua.ac.be/data. For 

multi-database mining, each of the datasets is divided 

horizontally into 10 and 20 databases. The multiple databases 

obtained from T10I4D100K and T40I10D100K are referred to 

as T1,1, T1,2, …, T1,n and T4,1, T4,2, …, T4,n respectively, such 

that n=10, 20. By varying the value of the minimum support 

threshold, minsupp(α), we get different sets of frequent 

itemsets using FP-Growth algorithm [11]. Once the data-

preparation done, we classify the multi-databases using our 

algorithm and BestDatabasePartition[6]. 

1) First study :In the first part of our experiments, we 

analyze the impact of minsupp(α) on the classification 

execution time. Therefore, we set the number of databases 

n=10 and we varied the value of α to get different sets of 

frequents itemsets. Then, we executed our algorithm and 

BestDatabasePartition on the same multiple database set. The 

execution times are presented in Fig. 2. From the experiment 

results, we observe that the execution time is relatively 

constant for the two algorithms, as the value of α increases.  

Fig. 2. Execution time versus minsupp 

The reason is that n and the number of candidate classification 

m didn’t change during the experiments (n=10, m=45). 

However, we notice that the classification time of our 

algorithm is shorter than that of BestDatabasePartition for 

α=0.03 to 0.06.  

2) Second study :In the second part of our experiments, 

we studied how the number of databases n and the number of 

candidate classification m  influence the time complexity of 

the two algorithms. Hence, we set the value of minuspp 

α=0.03 and we varied n from 3 to 20 databases. The 

experiment results obtained by the two algorithms are 

presented in Fig. 3  

Fig. 3. Execution time versus the number of databases. 

From the experiment results, we can see that the execution 

time tend go higher, as the value of n increases. However, we 

notice that the classification time increases faster for 

BestDatabasePartition.  The reason is that m becomes larger 

as the value of n increases. Since the time complexity of 

BestDatabasePartition depends strongly on m, we note a rapid 

increase of  BestDatabasePartition’s execution time for n=3 to 

20. According to the above experiment results, our algorithm 

is the fastest. This is because, unlike the existing works[4-7], 

the time complexity of our algorithm depends only on the 

number of databases and takes O(n2) time to explorer all the m 

edge lists and find the best classification of the n multi-

databases. 

V. CONCLUSION AND FUTURE WORK  

Multi-database classification (MDC) approaches have been 
improved from based on a given application to independent-
application. In this paper, we have discussed the existing 
MDC approaches by presenting their advantages and point out 
their limitations. Inspired by the existing works, we have 
proposed an improved approach to enhance the similarity 
measure and optimize the time performance of the existing 
classification algorithms. Experimental results have confirmed 
the efficiency of the proposed algorithm. Future work will be 
directed toward assessing our algorithm using real-world 
datasets and validate the tests on a real multi-databases 
system. 
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