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Abstract—Most physical processes encountered in the real
world are nonlinear in nature. The NARMAX (Nonlinear Au-
toRegressive Moving Average eXogenous inputs) model provides
a unified representation for a wide class of nonlinear system. The
problem considered in this work is the parametric estimation
of coupled mass-spring-damper system described by nonlinear
structures.

I. INTRODUCTION

Mathematical models are an essential part of most branches
of science and engineering. Indeed, a mathematical model can
be used to unveil fundamental properties of a system which
are not apparent otherwise, leading to a better understanding
of that process, or in the design of an automatic control
that can be used to regulate the behavior of certain system
variables.

This expression can be obtained directly from experimental
input/output data by determining the model form and the
numerical values of the unknown parameters or it can be
established using analytical development and physical laws,
which is difficult in most cases. To deal with this problem,
the process behaviour can be approximated using the system
identification theory that aims to determinate mathematical
model of a system with sufficient accuracy [1].

Most systems encountered in the real world are nonlinear
in nature, and since linear models cannot capture the rich
dynamic behavior of limit cycles, bifurcations, etc. associated
with nonlinear systems, it is imperative to have identification
techniques which are specific for nonlinear systems [2].

Leontaritis and Billings, [3][4], have proposed the
Nonlinear AutoRegressive Moving Average eXogenous inputs
(NARMAX) structure as a general parametric form for
modeling nonlinear systems structure. NARMAX model is
capable of describing a wide variety of nonlinear systems.
This formulation yields compact model descriptions that may
be readily identified and may afford greater interpretability [5].

This paper aims to model and identify nonlinear cou-
pled mass-spring-damper system using NARX and NARMAX
structures.

II. NARMAX MODEL

NARMAX model provides a unified representation for a
wide class of nonlinear system. NARMAX structures models
the input-output relationship as a nonlinear difference equation
of the form [5] [6]:

y (k) = f (y (k − 1) , y (k − 2) , · · · , y (k − ny) ,
u (k − 1) , u (k − 2) , · · · , u (k − nu) ,
e (k − 1) , e (k − 2) , · · · , e (k − ne))

(1)

where f (.) is a nonlinear function, u (k), y (k) and
e (k) are input, output and noise signal respectively and
nu, ny and ne are their associated maximum lags. This
nonlinear mapping may include a variety of nonlinear terms,
such as terms raised to an integer power

[
e.g., u2 (k − 3)

]
,

products of present and past inputs [e.g., u (k) u (k − 1)],
past outputs [e.g., y (k − 1) y (k − 2)] or cross-terms[
e.g., u2 (k − 1) y (k − 2)

]
. This system description

encompasses most forms of nonlinear difference equations
that are linear in the parameters.

A special case of the general NARMAX model is the NARX
(Nonlinear AutoRegressive with eXogenous inputs) model [7]:

y (k) = f (y (k − 1) , y (k − 2) , · · · , y (k − ny) ,
u (k − 1) , u (k − 2) , · · · , u (k − nu) )

(2)

III. MODELISATION OF COUPLED
MASS-SPRING-DAMPER SYSTEM

A model of coupled mass-spring-damper system (two
degree of freedom system) is shown in Fig. 1 [8].
The model is composed of two nonlinear springs, two weights
and two dampers. Since the upper mass is attached to both
springs, there are two nonlinear springs restoring forces
(Hooke’s law) acting upon it: an upward force fr1 exerted
by the elongation (or compression) x1 of the first spring; an
upward force fr2 from the second spring resistance to being
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elongated (or compressed) by the amount x2 − x1.

The second mass only feels the nonlinear restoring force
from the elongation (or compression) of the second spring.
Allowing the system to come and to rest in equilibrium,
we measure the displacement of the centre of mass of each
weight from equilibrium, as a function of time, and denote
these measurement by x1 (t) and x2 (t) respectively.

where:
fr1 = −k1x1+µ1x

3
1−k2 (x1 − x2)+µ2(x1 − x2)

3 and fr2 =
−k2 (x2 − x1) + µ2(x2 − x1)

3,
ki: spring constant, with i = 1, 2
xi: displacement of the centre of mass of the moving object,
mi: mass of the moving object,
δi: damping coefficient,
µi: nonlinear coefficient.

Fig. 1 – Coupled mass-spring-damper

Newton’s Law implies that two equations representing the
motions of the weights are:


m1ẍ1 (t) = −δ1ẋ1 (t)− k1x1 (t) + µ1x

3
1 (t)

−k2 (x1 (t)− x2 (t))

+µ2(x1 (t)− x2 (t))
3
+ u1 (t)

m2ẍ2 (t) = −δ2ẋ2 (t)− k2 (x2 (t)− x1 (t))

+µ2(x2 (t)− x1 (t))
3
+ u2 (t)

(3)

According to the pair of coupled second-order nonlinear
differential equations (3), we have:
µ2 (x1 (t)− x2 (t))

3
= −µ2 (x2 (t)− x1 (t))

3 ,

then:

m1ẍ1 (t) + δ1ẋ1 (t) + k1x1 (t)− µ1x
3
1 (t)

+k2 (x1 (t)− x2 (t))− u1 (t) = −δ2ẋ2 (t)
−k2 (x2 (t)− x1 (t))−m2ẍ2 (t) + u2 (t)

(4)

Using the finite difference approximation the coupled mass-
spring-damper model given in continuous time can be con-
verted to discrete time.

A. Finite difference approximation

Finite difference techniques rely on the approximation
of a derivative as the difference in the dependent variable
over a small interval of the independent variable, those
approximations are written using a small set of difference
operators [9]. Then, approximation of derivative operator is
an approach which consists in approximating a derivative
operator using a linear combination of signal values [10].

Taylor series is among the techniques used in the approxi-
mation of derivative operator.

f (xk+1) ≈ f (xk) + df
dx (xk) T

+ d2f
dx2 (xk)

T 2

2! + . . .+ dnf
dxn (xk)

Tn

n!

(5)

where T = xk+1 − xk is the interval over which we wish
to approximate the derivative and the superscripts indicate
the order of the derivative of f(x). Truncating after the first
derivative and rearranging yields an approximation of the first
derivative:

df

dx
(xk) ≈

f(xk+1)− f(xk)

T
(6)

For the second derivative:

d2f

dx2
(xk) ≈

f(xk+2)− 2f(xk+1) + f (xk)

T 2
(7)

B. Discrete model of coupled mass-spring-damper

Applying the approximation of derivative operator approach
equation (4) can be converted to discrete time and rewritten
as a NARX models (9) and (10).

m1

T 2 x1 (k + 2) +
(
δ1
T − 2m1

T 2

)
x1 (k + 1)

+
(
m1

T 2 − δ1
T + k1

)
x1 (k)− µ1x1

3 (k)

+m2

T 2 x2 (k + 2) +
(
δ2
T − 2m2

T 2

)
x2 (k + 1)

+
(
m2

T 2 − δ2
T

)
x2 (k) = u1 (k) + u2 (k)

(8)

Equation (8) can be described by:

x1 (k) = − α11 x1 (k − 1)− α12 x1 (k − 2)
+ α13 x

3
1 (k − 2)− β11 x2 (k)

− β12 x2 (k − 1)− β13 x2 (k − 2)
+ γ11 u1 (k − 2) + γ12 u2 (k − 2)

(9)

TABLE I – Theoretical relationship of NARX parameters
to continuous-time system coefficients

NARX Relationship to
coefficient continuous-time

coefficient

α11 ( δ1
T

− 2m1
T2 ) T2

m1

α12 (m1
T2 − δ1

T
+ k1)

T2

m1

α13 µ1
T2

m1

β11
m2
T2

T2

m1

β12 ( δ2
T

− 2m2
T2 ) T2

m1

β13 (m2
T2 − δ2

T
) T2

m1

γ11 = γ12
T2

m1



x2 (k) = − α21 x2 (k − 1)− α22 x2 (k − 2)
− β21 x1 (k)− β22 x1 (k − 1)

− β23 x1 (k − 2) + β24 x1
3 (k − 2)

+ γ21 u1 (k − 2) + γ22 u2 (k − 2)

(10)

TABLE II – Theoretical relationship of NARX parameters
to continuous-time system coefficients

NARX Relationship to
coefficient continuous-time

coefficient

α21 ( δ2
T

− 2m2
T2 ) T2

m2

α22 (m2
T2 − δ2

T
) T2

m2

β21
m1
T2

T2

m2

β22 ( δ1
T

− 2m1
T2 ) T2

m2

β23 (m1
T2 − δ1

T
− k1)

T2

m2

β24 µ1
T2

m2

γ21 = γ22
T2

m1

Table 1 and 2 show the relationship of discrete-time NARX
parameters in (9) and (10) to the underlying continuous-time
coefficients.

IV. IDENTIFICATION OF NARX MODEL
OF COUPLED MASS-SPRING-DAMPER

There are several algorithms of identification and the most
used is this called RLS (Recursive Least Square algorithm).
Indeed, it is frequently used because of his capability to
approximate a large class of systems and his simplicity of
implementation [11].

A. Identification with RLS algorithm

As shown in Fig. 2, RLS algorithm allows to estimate the
model parameters by minimizing a measure of the model
prediction error

ε (k) = y (k) − ŷ (k) (11)

where ŷ (k) is the prediction of the scalar measured output
y (k), given by:

ŷ (k) = θ̂T (k − 1) ψ (k) (12)

where θ̂ (k) is the vector of estimated parameters and ψ (k)
is the regression vector containing old inputs and outputs of
the system to be identified [12].

The RLS algorithm can be written in following form:



θ̂ (k) = θ̂ (k − 1) + P (k)ψ (k) ε (k)

P (k) = P (k − 1)− P (k−1)ψ(k)ψT (k)P (k−1)
1+ψT (k)P (k−1)ψ(k)

ε (k) = y (k)− ŷ (k)
(13)

with P (k) is the gain matrix, given by:

P (k) =

[
k∑

i=n+1

ψ (i)ψT (i)

]−1

(14)

Fig. 2 – RLS identification method

B. Identification of NARX model

Fig. 3 shows the simulation input x2 (k) and predicted
output of the NARX description model.
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Fig. 3 – (top) Displacement x2 (k), simulated and identified.
(bottom) Error betwen simulated and identified output

Fig. 4 presents the results of identifying the simulated
model. This figure shows that the identified parameters values
corresponded closely to those derived theoretically.
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Fig. 4 – True and estimated parameters

C. Model validation

It is not obvious that how to quantify the analysis of the
model simulated data with the measurements. In order to solve
this problem, the equation (15) is used to evaluate the accuracy
of model output.

%VAF =

1−

1
N

N∑
k=1

(y (k)− ŷ (k))
2

1
N

N∑
k=1

(y (k))
2

 (15)

where N is the record length, y (k) is the measured data,
ŷ (k) is the model output. The simulation output ŷ (k) of the
NARX description model is compared with the output of the
measured data y (k) by computing the percent variance for
%VAF.

To determine the validity of this NARX description model
(10) we simulated its response for a parameter set correspond-
ing to that used for the continuous-time model [13]. With
over 99.9983% VAF the NARX output matched that of the
continuous-time simulation with negligible error.

V. IDENTIFICATION OF NARMAX COUPLED
MASS-SPRING-DAMPER SYSTEM MODEL

In this section, we added at the outputs, x1 (k) and x2 (k),
a Band-Limited White Noise e1 (k) and e2 (k), respectively.

The NARMAX model is as follows:
x2,k = − α1,k x2,k−1 − α2,k x2,k−2 − β1,k x1,k
+ β2,k x1,k−1 − β3,k x1,k−2 + β4,k x

3
1,k−2

+γ1,ku1,k−2 + γ2,ku2,k−2 + θ1,ke2,k
+ θ2,k e2,k−1 + θ3,k e1,k

(16)
Fig. 5 presents the simulation input x2 (k) and the predicted
output of the NARMAX description model.
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Fig. 5 – (top) Displacement x2 (k), simulated and identified.
(bottom) Error betwen simulated and identified output

Fig. 5 shows that the error between simulated and predicted
output is important. Indeed, the predicted output matched the
measured output with over 87.6601% VAF. The presence of
perturbation on the NARMAX structure affects the quality of
parametric estimation.

VI. CONCLUSION

The coupled mass-spring-damper can be represented by a
higher order linear structure which complicate the elaboration
of the optimal command. So, it is necessary to elaborate
nonlinear structures to solve this problem. Indeed, based on
the finite difference approximation, a NARX structure of
coupled mass-spring-damper was obtained.

Simulation results showed that the estimated parameters
of NARX structures are almost the same as the measured
with negligible error. When a Band-Limited White Noise was
added at the output, the quality of parametric estimation was
be affeceted.
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