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Abstract—In recent years, autonomous navigation for mobile
robots has been considered a highly active research field. It
depends essentially on the perception, localization, cognition and
motion control. Within this context, we are interested to apply
a localization approach for a wheeled mobile robot in a known
environment. The robot’s model and map parameters are initially
analyzed and defined. The localization algorithm is developed
based on the robot’s model and data obtained from exteroceptive
sensors. A step of optimisation using the Levenberg Marquardt
Algorithm is then followed. Thereafter, simulation results are
described to show performances of the proposed algorithm.

I. INTRODUCTION
Relatively to the artificial intelligence, cartography is a

highly crucial step for localization and autonomous naviga-
tion of a mobile robot. Starting from an initial position, a
robot relies on its exteroceptive sensors to build a map for
the navigation environnement. The robot localizes itself and
learns to react in function of existing constraints. This paper
presents a combination of different tools in order to create
a complete platform to develop robotic applications. We start
essentially with modeling the navigation environment, then the
localization method and finally the experimental validation on
an existing mobile robot.

Once the map is fixed, the control task is presented.
Localization and tracking the robot during its navigation is
primordial in order to ensure an autonomous navigation. The
localization purpose is to know the exact position of the
robot to navigate without hitting obstacles and detect the goal
location to reach [8]. In recent years, researchers have focused
on the localization as it has been considered an important
process to know the exact position of the robot during its
navigation. They have been based on probabilistic methods
that major ones are the Kalman Filter localization, the Markov
localization and the particle filtering algorithm also known as
the Monte Carlo algorithm.

On the one hand, the Extended Kalman Filter combines
results from dead reckoning with extracted data from ex-
teroceptive sensors [2]. It also assumes that the probability
distribution of both the robot configuration and extracted data
from sensors are continuous and Gaussian. Subsequently, only

the mean value and variance of the Gaussian function are
needed to be updated, therefore, the computational cost is very
low [10].

On the other hand, the Markov method divides the configu-
ration space into cells. For a mobile robot moving on a plane,
the configuration space is 3D dimensional (x, y, θ) and each
cell contains the probability of the robot to be in that cell. The
probability distribution of the sensors model is also discrete
and during action and perception, all the cells are updated [10]
[12].

The Monte Carlo Localization (MCL) is derived from the
Markov method. Comparing to these previous algorithms, the
MCL is easier to implement and ensures higher accuracy. In
practice, it shows empirical results by an order of magnitude
of memory and computation requirements [4].

The rest of this work is organized as follows. In section
II , we deal with the localization method that we propose
to know the exact position of the robot while moving. We
propose as well an optimization step needed to be sure that
the obtained position is the optimal one. Simulation results
are then analysed to give an idea about the performances
of the localization algorithm in section III . Section IV is
dedicated to validate the developed method by an experimental
application on the mobile robot “Wifibot”. After describing its
platform and different sensors used in the process, we display
localization measurements and compare between measured
and calculated positions. Finally, conclusions are presented in
section V .

II. PROPOSED METHOD FOR LOCALIZATION AND ROBOTIC
MAPPING

In this paper, we propose an efficient approach in order to
locate the robot during its navigation with accuracy. We as-
sume that the robot’s initial position is approximatively known.
As to odometric feedback, the robot position can be easily but
not precisely calculated. Some errors are caused by interaction
of the robot with inevitable features of the environnement as
wheel slippage, brutal or fast mouvements. . . Therefor, we also
depend on other sensors to get more reliable data.
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The presented method to locate the robot is inspired from
the Kalman Filter method where we combine between dead
reckoning and extracted data from robot’s sensors. Considering
the differential structure of the robot and the reliability of the
Wifibot’s sensors, we are able to obtain the robot’s position
with a high accuracy. Despite the fact that the robot navigates
in a known environment, several constraints may appear es-
pecially when the robot must follow a certain trajectory or
avoid different obstacles. That is why we need to optimize
the localization algorithm. The Levenberg-Marquardt Method
(LMM) is the most suitable technique to use [5], [7].

Regarding nonlinear least square problems, the LMM tries
to fit a parameterized function to a set of measured data
points by minimizing the sum of the squares of the errors
between measured values and calculated ones. This technique
is in fact a combination between the gradient descent method
and the Gauss-Newton method considered as standard min-
imization methods. Using the gradient descent method, the
sum of squared errors is reduced by finding the minimum
of the locally quadratic function. The LMM acts like a
gradient descent method when parameters are far from their
optimum values and acts like the Gauss-Newton method when
parameters are close to their optimum values.

However, the algorithm effectiveness depends on local min-
ima which can not be necessarily global ones. This fact,
mislead to an incorrect information especially in presence
of symmetric effects in the navigation environnement [9].
To avoid this problem, we rely on the approximation of the
robot position provided by odometric sensors. Consequently,
every time the robot moves, the algorithm initializes its actual
position comparing to its previous one [6]. To this way and
despite the deterministic nature of the LMM algorithm, it
presents best convergence properties and ensures more precise
and quicker solutions.

A. Formulation of the Levenberg-Marquardt algorithm

1) Optimisation proposition: We introduce the function
ŷ(t, p) defined for the variable t and a vector p of m points.
In order to minimize the sum of the least squared error
between the measured parameters of y(ti) and calculated ones
of ŷ(t, p), we define an error criterion known as Chi-square
χ2 with:

χ2(p) =

m∑
i=1

[
y(ti)− ŷ(ti, p)

wi

]2
(1)

= (y − ŷ(p))TW (y − ŷ(p)) (2)
= yTWy − 2yTWŷ + ŷTWŷ (3)

wi is the measurement error of the function y(ti) and W is a
diagonal matrix with:

Wii =
1

wi2

In every iteration, we aim finding the perturbation h of the
parameter p minimising χ2.

2) The gradient descent method: The gradient descent
technique is highly known and used for optimisation problems
especially for large scaled systems. We express the gradient
of the χ2 by:

∂

∂p
χ2 = [y − ŷ(p)]TW

∂

∂p
[y − ŷ(p)] (4)

= −[y − ŷ(p)]TW
∂ŷ(p)

∂p
(5)

= −[y − ŷ(p)])TWJ (6)

J is an (n ×m) jacobian matrix representing the sensibility
of the function ŷ while the variable p is varying. As a result,
the perturbation h responsable of heading parameters toward
the highest descent is:

hgr = αJW (y − ŷ)

α is a variable that gives an idea about the direction of the
descent.

3) The Gauss-Newton method: This technique minimizes
the sum of squares of a quadratic function that we consider
very near to the optimal solution. It has proved its efficiency
especially for medium scaled systems and converges faster
than the gradient descent method. The Gauss-Newton method
introduces a perturbation element h described by the following
Taylor expansion:

ŷ(p+ h) = ŷ(p) +

[
∂ŷ

∂p

]
h (7)

= ŷ + Jh (8)

Substituting the function ŷ(p+ h) in equation (3), we obtain:

χ2(p+h) = yTWy+ŷTWŷ−2yTWŷ−2(y−ŷ)TWJh+hTJTWJh
(9)

The result clearly proves that χ2 is approximatively
quadratic. The hessian matrix of the χ2 verifying the min-
imisation criteria is defined by JTWJ . The perturbation h
minimizing χ2 is obtained by having ∂χ2

∂h = 0. Thus:

∂χ2(p+ h)

∂h
≈ −2(y − ŷ)TWJ + 2hTJTWJ (10)

The Gauss-Newton perturbation is defined by the next
equation:

[JTWJ ]hgn = JTW (y − ŷ) (11)

4) The Levenberg Marquardt Method: When combining
these two last methods, we obtain the Levenberg Marquardt
technique which fits its parameters between both of the gradi-
ent descent and the Gauss-Newton optimisation methods. The
equation becomes:

[JTWJ + λI]hlm = JTW (y − ŷ) (12)

In case of lowest values of λ, we apply the Gauss-Newton
update. Otherwise, it is the gradient descent update.

Consequently,we define the convergence step of Levenberg
Marquardt hlm as follows:

hlm = (Hi + λI)−1Gi



with:
• H is the hessian matrix of the minimization criteria and

given by JTWJ .
• Gi is the calculated gradient defined by JTW (y − ŷ).
• λ is a setting parameter which increases when the cost

function diverges.

B. Presentation of the proposed localization approach

The developed technique of localization followed by the
defined optimisation step can be summarized in the next
organisation chart.

Fixing the robot’s initial position
(x0, y0, θR)

Calculating the criterion J0

Calculating the hessian matrix H

Calculating the Levenberg Marquardt step

hlm = (Hi + λI)−1Gi

Calculating the actual robot’s position

(xR, yR, θR)

Calculating the criterion Ji+1

Ji+1 < Ji

End

Sending the optimal robot’s position

λ = λ
a

λ = λ× a

i = i+ 1

and the gradient G

No

No

True

of the program

Fig. 1. Description of localization steps

C. Application of the localization method

We have developed a tracking algorithm depending on the
robot’s position defined by (xR, yR) and its orientation θR.
We assume that the robot’ initial position is its actual one.
While the optimal real position is thereafter given by the LM
algorithm. The localization technique is based on the following
steps:

• Acquisition of sensors measurements.
• Computation of the distance between the obstacle and the

robot based on its actual position.
• Defining the convenient cost function Z for the system.
• Minimizing Z using the optimization method.

The mapping step requires a known environment where the
robot navigates in presence of obstacles that it should avoid.
Map’s dimensions are given as (430 × 460) cm2 and an
obstacle of (45 × 30) cm2 placed in the map at the position
(138× 286) cm2.

1) Acquisition of odometric data: In the localization pro-
cess, we divide the environment into n areas. We note those
measurements (mt1, ...,mtn).

2) Distance calculation: Based on the robot’s position, we
are able to determine n distance values which represent in fact
theoretical measures noted (m1, ...,mn). We create a loop that
increments the variable d until an obstacle occurs. As a result,
the obstacle position is defined by this form:

x = xR + d cos(θR + θC)

y = yR + d sin(θR + θC)

where:
• (x, y) is the calculated obstacle’s position depending on

the actual position of the robot (xR, yR).
• θR is the orientation angle given by the robot.
• θC is a vector containing n values.
The distance d is fixed initially at 0 and incremented in each

iteration. In presence of an obstacle, we deduce the measure
that we note:

m = d

3) Cost function: We define the cost function as:

Z =

n∑
i=1

(mti −mi)
2

The main objective is to use the minimal cost function
Z in order to locate the robot. We consider the gradient
method in this part. To refine the calculation, we integrate
in the algorithm a comparison between calculated position
coordinates and odometry data that the robot’s sensors provide.
As a result, coordinates (xR,yR) corresponding to the lowest
cost function is the most probable real position of the robot.

III. EVALUATION OF THE LOCALIZATION METHOD

A. Programming of the navigation map

In order to obtain simulation results of the localization
algorithm, we program the navigation environment of the
mobile robot. In C + +, the map is transformed into an array
containing values of {1} to indicate the presence of an obstacle
and {0} to show an empty space. The created array is formed
of pixels with 1 pixel = 4cm2. Figure 2 describes the designed
environment.

B. Simulation results

We choose to test the developed algorithm’s performance
using the simulation calculator MATLAB. The robot is dedi-
cated to reach a target fixed by the algorithm and starting from
a random position. The robot’s orientation is already known.

1) First case : The target point is (50,50) with an initial
orientation −90◦. The initial position is defined along a 50
cm surrounding the target. Figures 3, 4, 5 and 6 present
respectively the trajectory made by the robot to reach its
destination, the convergence of the two parameters x and y
to their fixed values and finally the progression of the criteria
cost function Z that we aim minimizing.



Fig. 2. Designed environment
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Fig. 3. The robot path for reaching the target
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Fig. 4. Convergence of the x position toward its desired value

2) Second case : The target point is (180,200) with an
initial orientation 45◦. The initial position is defined along
a 100 cm surrounding the target. Figures 7, 8, 9 and 10
present respectively the trajectory made by the robot to reach
its destination, the convergence of coordinates x and y to their
fixed values and finally the progression of the criteria cost
function Z that we aim minimizing.

All presented curves and robot’s trajectories show clearly
that the robot reaches its defined target successfully. In spite
of the robot’s random initial position, we see that every time,
it finds its way to go to its desired destination.

0 5 10 15
45

50

55

60

65

70

75

t

y

Fig. 5. Convergence of the y position toward its desired value
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Fig. 6. Convergence of the criterion Z toward the minimal value
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Fig. 7. The robot path for reaching the target

IV. EXPERIMENTAL VALIDATION OF THE LOCALIZATION
METHOD

We choose to apply the developed localization method along
with optimization technique on a real mobile robot knows as
Wifibot.

A. Description of the Wifibot

Wifibot presents a multi-purpose robot. It is a Wifi enabled,
low cost and running Linux platform. Wifibot is useful for
several applications in the fields of education, research, su-
pervision and entertainment. It is a differential robot with 4
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Fig. 8. Convergence of the x position toward its desired value
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Fig. 9. Convergence of the y position toward its desired value
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Fig. 10. Convergence of the criterion Z toward the minimal value

driving wheels. It is characterized by an open and modular
architecture controlled by a serial communication link and by
Wifi. It integrates a computing board unit running on Linux,
Ubuntu. This platform stands by its simplicity and efficiency.
The Wifibot is composed by an anodized aluminum frame,
an USB motorized camera, 4 infrared sensors, central inertia
Vn − 100 and a laser sheet Hokuyo UTM − 30LX . The
robot platform is controlled using a RS232 port. The Wifi
board ensures a wireless connection of the system with the
configured access point which is provided freely. The structure
of the Wifibot platform presents an advantage to the user to

develop and manipulate different applications in an easy way.
Figure 11 describes the Wifibot robot.

Fig. 11. The Wifibot robot

The Inertial Measurement Unit, odometer and laser teleme-
ter are sensors involved in the process.Realized tests have
proved that the laser telemeter is the most reliable sensor to
obtain an exact position of the robot. It will be considered
as the main sensor for the proposed method. In order to
avoid failure in the program, orientation angle is chosen to
be extracted from the robot. Starting from a fixed orientation,
it is due to the inertial unit that we are able to obtain the
relative robot’s orientation while moving.

B. Calculated distances from the Wifibot

As the Laser sensor supplies 1081 measures sweeping from
−135◦ to +135◦, we restrained the test to a limited number
of samples n. Considering a step of 27◦, we obtain n = 11
measurements. Figure 12 illustrates calculated distances in the
map in presence of an obstacle and the robot. The robot is
situated in the center of the map at the position defined by:

x0 = 215cm

y0 = 230cm
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Fig. 12. Calculated distances between the robot and obstacles



C. Experimental results

The localization method has been transformed in C + +
langage and implemented then in RTMaps Studio which
represent the appropriate middleware to control the Wifibot.
Two projects have been created, the first was implemented on
the robot itself and the second was within reach of the user to
extract different mesures. Figure 13 and 14 represent respec-
tively measured positions from laser telemeter and calculated
position resulted from the algorithm.

Fig. 13. Measured positions in mm

Fig. 14. Calculated position in cm

Presented results are approximatively equal which reveal the
effectiveness of followed localization and optimization tech-
niques. Many improvements are recommended to strengthen
more the algorithm.

V. CONCLUSION

As it is primordial to know the robot’s position and ori-
entation all along its navigation, we have proposed a method
to track the robot and to determine coordinates of its control
point besides its orientation θ. This method is based on the
robot’s model and the extracted data from its exteroceptive
sensors. We have proceeded then with an optimization using
the Levenberg Marquardt algorithm to ensure the convergence
of the cost function to its minimal value. Simulation and direct
experimental tests on the robot show the robustness of the
proposed method and its efficiency to locate the robot in the
map. The robot is able to avoid the obstacle and map fronts

with success. The next phase is to handle the navigator which
tasks are now easier thanks to the localization’s robustness.
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