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Abstract— This paper discusses the relevant theoretical problem 

of the numerical derivative estimation of noisy signals. In this 

paper, a comparative study of some different schemes of the 

differentiators is given: Kalman filter, the well-known Super 

Twisting algorithm, Super Twisting with dynamic gains and 

Euler backward difference method.  The analysis of the study 

results can focus on the strengths and weaknesses of each 

algorithm with some chosen criteria. 
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I. INTRODUCTION 

    Numerical differentiation of measured signals is an old 

problem which is still considered as an attracted topic by 

many scientific communities and also by some industrial 

applications.  

     The major problem of noisy differentiation signal is the 

amplification of the noises on the signal estimation where it is 

so hard to discern between the noise and the basic signal.  

This problem becomes more important in practice, where the 

measurement noises are not obvious to model.  

Moreover, the estimation of any derivative can be destroyed 

even for a small high-frequency noises which is the usual 

assumption considered in most cases.  Indeed, the practical 

differentiation consists to have a trade-off between exact 

differentiation and robustness with respect to noises.  

     In the literature, different approaches are proposed to deal 

with the problem of finding suitable linear or nonlinear 

algorithms able to reduce the noise effect while trying to leave 

the based signal with any phase shift. 

     In signal processing, many researchers have been 

developed. to cast the problem in terms of digital filter design 

frequency domain. Another standard approach is to invert the 

transfer function of a digital integrator well adapted to obtain 

a digital differentiator. One of the others traditional method is 

to use the finite difference method such as the Euler backward 

difference method. This one is simple to implement. However, 

with the sensors noises, this approach gives false results.  

Although a low-pass filter can attenuate the noise on the 

estimation signals, some phase delay can be inevitable 

introduced. 

     Other approaches are directed towards an observer design 

problem where the knowledge of the system/noise model is 

necessary. In [1], the proposed differentiator is a high gain 

observer. The major drawback of this one is its sensitivity to 

measurement noises or perturbations which due to the infinity 

value of its gain.  

      In the case of random noises/perturbations, the Kalman 

filter [8] [9] can be used to estimate a derivative of some noisy 

signal which is optimal with the Gaussian white noises central 

is addressed by Kalman observers whose gains are computed 

by the resolution of an algebraic Ricatti equation [8].  

In many cases the structure of the signal is unknown except 

from some differential inequalities, so, the observer approach 

can’t be elaborated. An alternative approach is then addressed 

which consist of the design of differentiator scheme.  

In such case, an algebraic differentiator [5] [6] [7] are based 

on truncated Taylor series of the signal to be differentiated are 

potentially interesting. 

      Other possible method is proposed which is relies on the 

higher order sliding mode [10] [11]. In [16], Levant proposes a 

1st-order sliding mode differentiator which is well-known by 

“Super-Twisting”. This last one is widely applied in the control 

context.  Such algorithm has a simple form and is therefore 

easy to be implemented. However, its performance depends on 

the choice of the parameter values which are depended on the 

Lipschitz constant of the signal derivative. This constant is 

usually not known accurately beforehand, especially in the 

presence of noises. To avoid this problem, some research 

works were proposed a new scheme of the classical Super-

Twisting, see for instance, [11-14]. 

     In this paper, three kinds of differentiators are studied: 

Kalman algorithm [ref], Super-Twisting [16] and a new 

scheme of Super Twisting which have dynamic gains. By 

using an academic example, a detailed comparative study is 

given. This paper is organized as follows. Section 2 introduces 

the basic principle of the three differentiators. In section 3 

presented an academic example.  Section 4 is dedicated to 

discuss and to synthesize the obtained results. 

II.       STUDIED DIFFERENTIATORS 

A. Kalman Filter 

Started with the following state system: 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

x t Ax t Bu t Mw t

y t Cx t Du t v t

  


  
                            (1) 
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Where x is the state vector, u and y are respectively the 

input and the output of the system. 

A, B, C and D called respectively state matrix, input matrix, 

output matrix and feed-forward matrix of some system. 

Where ; ;n m qx u y    

; ; ;n n n m p n p mA B C D         

w(t) and v(t)  are stationary random signals and their 

covariance is zero. Note that W and V are respectively the 

Power Spectral Density of w(t) and v(t). In order to have an 

optimal behavior, the Kalman filter presents an assumption on 

W and V which must be Gaussian white noises central.  

So the Kalman filter equations are as follow: 

ˆ ˆ ˆ( ) ( ) ( ) ( ( ) ( ))

ˆ ˆ( ) ( )

fx t Ax t Bu t K Cx t y t

y t Cx t

    




             (2) 

With fK  is the gain of the filter and x̂  is the estimate state. 

The error expression can be taken as ˆ( ) ( ) ( )t x t x t  
.
 

To minimize the error ( )t
, 

the gain fK  is so computed with 

using a defined follows criterion:
 

( ) ( ) ( ) ( ) ( )T TJ t E t t traceE t t          
                            (3) 

With E is an expected value of ( ) ( )T t t     quantity. 

 Then with using the Riccati equation, the value of fK  is 

obtained as: 

 1( ) ( )T TKf E t t C V                                  (4) 

 

B. Super TwistingDifferentiator 

 

Consider ( )f t   a measurable locally bounded function 

defined on 0,
 as following:  

                    0( ) ( ) ( )f t f t t                      (5) 

     Where 
0 ( )f t  is an unknown base signal with (1 )thn  

derivative having a known Lipschitz constant 0C  and  ( )t  
is a bounded Lebesgue-measurable noise with unknown 

features, defined by:   t   with   is sufficiently small. 

In [16], Levant defines an infinite number of differentiator 

schemes which makes possible to estimate the 
thn  derivative 

of the considered signal. So, from these schemes and for 
1n  , a Super-Twisting differentiator (ST) can be defined by 

the following equations:  

 

0 0

1

2
0 1 0 0 0

1 1

1 1 0 1

sgn( )

sgn( )

z v

v z z f z f

z v

v z v







    

 


  

                 

                                                               

                                   (6)  

Where 0z  and 1z   are the states of the algorithm and 0v  is its 

output. 

Under sufficient conditions given in [16], 0 1,   are the 

positive gains ensuring a finite-time convergence of the 

algorithm by satisfying these inequalities:    

1

2 1

0

1

4

C

C
C

C















            (7) 

According to this expression, the gain choice assumes the 

knowledge in advance of the Lipschitz constant of the (n+1) 

order derivative of the useful signal. But, if the signal is noisy, 

the Lipschitz constant is a priori unknown and the choice 

becomes even more difficult. 

Therefore, the main drawback of such algorithm is the 

setting of its gains to keep good performances even when the 

frequency of the input signals of differentiator changes or if 

the input spectrum has rich frequencies. It is not always easy 

to tune the parameters values i  for a given bandwidth of the 

input signal.  

 From (6), it can be seen that the terms iz  introduce the 

integral components and act as estimators of the input signal 

derivative. Theoretically, the ideal sliding mode must ensure 

the first terms of equations (6) to zero in finite time. However, 

the ideal sliding mode never be realized in the practice owing 

to the different origin of inaccuracy, such as a measurement 

errors. Moreover, the presence of “sign(.)” function in these 

terms leads to high frequency oscillations. Indeed, this 

chattering effect can deteriorate the precision of the estimated 

signal. Therefore, it is not easy to adjust the gains to reach a 

good compromise between accuracy and robustness to noise 

ratio. 

Then, to avoid this problem, a new differentiator is 

proposed called Dynamic Gains Super Twisting differentiator. 

 

C. Dynamic Gains Super Twisting differentiator 

 

In [14], the Dynamic Gains Super Twisting (DGST) 

differentiator is proposed to facilitate the adjustment of 

differentiating gains while providing a good compromise 

between accuracy and noises robustness.  

This new scheme is based on adding a linear function to the 

second term of the algorithm. 

This algorithm keeps the same notations as the classic ST. 

The proposed differentiator is given by the following system, 

where f (t) is an input signal of the algorithm: 

0 0

1

2
0 0 0 0 0 0 1

1 1

1 1 0

ˆ ( ) ( )

ˆ ( )

z v

v z f sign z f k z f z

z v

v sign z f







       





  

                

(8) 

 



Where 0k
 
 is the convergence positive gain of the 

differentiator. 

The dynamic gains 0 1
ˆ ˆ,   are defined by: 

   

 

1

20 0 0 0 0 0

1 0 1 1

0 0 0 0

0 0 0 0

ˆ ˆ ˆsign ; and ; t

ˆ ˆ ˆ; and ; t

     

   

  
    
 


  

                                                                         (9) 

 

 

 

For the proof convergence of the algorithm,  see [15].  

III.  ACADEMIC EXAMPLE: MECHANICAL SYSTEM "MASS, 

SPRING, DAMPER" 

To study the effectiveness of the presented differentiators, a 

mechanical system is used; see (Fig.1) to compute speed of 

the mass m.   

 

 

Fig.1.  Mass- Spring- Damper System 

The mathematical model of the system is as follows: 

 

              
( ) ( ) ( ) ( )my t y t ky t F t                      (10) 

 

Where: k  : spring stiffness (N / m);   : spring damping (Ns 

/ m);  m : mass of the object (Kg);  ( )F t  : external force(N).  

 

Then the state representation is written as follows: 

( ) ( ) ( )

( ) ( )

x t Ax t Bu t

y t Cx t

 



 

With: 

        

 
0 1 0

, , 1 01A B Ck

m m m



   
     
    
   

                    (11) 

IV. SIMULATION RESULTS AND ANALYSIS 

Let consider the noisy input signal differentiator shown in 

(Fig.2). For the simulation tests, the SIMULINK is used with 

sampling period eT equal to 310 s. The parameters of the 

system are chosen as: 
1 11 , 1 . , 0.5 . .m kg k N m N s m    . 

The parameter of each algorithm is taken as: the gain of the 

Kalman filter 

 

0.4255

0.0
.

905
fK

 
  
       

The Super-Twisting 

differentiator parameters are: 0 14, 7    . The value of 

the Dynamic Gains Super Twisting gain is 0 6k  . 

 

Fig. 2.  Input signal : position y(t) of the mass 

The comparison criteria adopted is the absolute value of 

magnitude error and the delay (pick to pick) between the 

signals.  

For the estimation of the first derivative in presence of 

Gaussian white central noise, the simulations show that: 

The (fig.3.a) shows the Super-Twisting differentiator 

presents a maximum error 10 times more than that given by 

the Dynamic Gains Super Twisting differentiator this big 

diffenrence is because the presence of a linear part 

0 0( )k z f   in the anallytic expression of Dynamic Gains 

Super Twisting differentiator; the adding of this continuous 

term enssures smoothing of noise at the output thanks to the 

low value of convergence gains.  

 The maximum error of the Dynamic Gains Super Twisting 

differentiator is more important than that given by kalman 

filter; in contrast if we add a filtering stage on the algorithm of 

Gains Super Twisting differentiator the accuracy will be 

improved. For the phase shift, the Kalman filter has the lowest 

phase schift.  

Finally, the Kalman filter presents the best result because it 

puts in their optimal conditions that is to say with Gaussian 

white central noise. Or in the opposite case (with other type of 

noise) the Dynamic Gains Super Twisting differentiators may 

be presents more efficient results. 

Table.I summarizes the results obtained during the 

simulations.  

TABLE I 

ESTIMATION ERRORS AND PHASE SHIFT FOR THE ESTIMATE OF THE FIRST 

DERIVATIVE 

Algorithm KALMAN ST DGST 

maxe  
0.00865 0.01976 0.009803 

Phase 

shift (°) 
0.079 0.140 0.106 
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Fig.3.a.  Super Twisting differentiator 

 
Fig. 3.b.  Dynamic Gains Super Twisting differentiator  

 
Fig.3.c.  Kalman differentiator 

Fig. 3.  Differentiator outputs 

 

Fig. 4.a.  Super Twisting  error  

 
Fig.4.b.  Dynamic Gains Super Twisting  error 

 

Fig.4.c.  Kalman error  

Fig.4.   Error curve 
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Analytic derivation

Super-Twisting Differentiator
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Analytic derivation

Dynamic Gains Super-Twisting Differentiators

0 2 4 6 8 10 12

x 10
4

-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

time

o
u
t

 

 

Analytic derivation

Kalman filter
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In table II, the different simulation results provided in this 

paper for the different algorithms differentiation are given. A 

comparative summary was compiled to highlight the 

advantages and disadvantages of each method 

TABLE II 

COMPARISON OF DIFFERENT SCHEMAS OF DIFFERENTIATION 

Algorithm precision phase 
shift 

robustness ease of 
implement

ation 

calculati
on  time  

ST + - - - - 
DGST ++ + + + ++ 
KALMAN +++ ++ + ++ -- 

 

V. CONCLUSION 

In this paper we proved that the adjustment of the Kalman 

filter is not easy. Indeed, the optimality of its accuracy is 

ensured that despite very strong assumption. In practice, 

various perturbations signals are not necessary to be white. 

The Dynamic Gains Super Twisting differentiator may give 

better results than the kalman filter in the case adds a filter to 

it. 

It is possible to use cascade algorithms in order to compute 

acceleration of the mass. In th future works, it is an important 

to study these differentiators for different kinds of noises and 

also input signals.  
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