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Abstract—In this paper, we propose to use the method of
piecewise constant level set with the Mumford-Shah model.For
image segmentation, the Mumford-Shah model needs to find
the regions and the constant values inside the regions for the
segmentation. For this purpose, we need to use a variational
approach generally used in image segmentation which allow the
extraction of the regional information (mean and variance) in an
adaptive manner. Finally, we validate the proposed models by
numerical results for radiographic image segmentation.

I. INTRODUCTION

The limitations of the active contour based on borders have
directed the research towards solutions where the contour is
built from all the information contained in the image. In most
of the cases, a stage of pre-processing is necessary to extract
the relevant information. Various types of information can be
extracted for example: the average and the variance of every
region in the image.

The application of the radiographic image segmentation on
weld defects still remains a vast field of research. In this paper,
we propose a variational approach which is a generalization of
the model of Chan Vese [1] while estimating in a adaptive way
the regions information (mean and variance). We suggested to
use the variance to distinguish the various regions which have
the same mean, this one is estimated during the evolution of
the curve which bounds regions.

II. MUMFORD AND SHAH METHOD

Being a natural extension of geometrical active contour,
the geometrical flow is obtained by the minimization of
functional one given. Those are the active contour based
regions. More strong to the noise and less sensitive to the
position of the initial curve, the models based on regions
have for general principle to develop a curve that, in order to
in the convergence, realizes a partition of the image in two
homogeneous regions. It is here two regions because a single
curve bounds only two domains in image. If in the contour
approaches, we calculate the gradient norm, the active contour
regions base generally on statistical modellings. Besides,
certain models take into account at the same time the local
information situated along the contour and the statistical
characteristics of regions defined by the realized partition.
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In 1989, Mumford and Shah proposed the first segmentation
approach based on active contour [2]. The basic idea of
this method is to deform a curve in an image where some
conditions of regularity are imposed. The basic idea of
Mumford and Shah is to minimize a function of energy. So
if we note u(x,y) our image with value of ) limited of %>
in R and I'; the contour of every region R, on which the
image is approached by a function g;, then the functional to
be minimized can be written as:

B(Tigiu) = M [ [o(u(@,y) — gi(x,y)dady +
I g Vg, 9) Pdedy + p [, dl

Where A and g are positive real parameters for weighting the
data fidelity term and long-term contours respectively. This
problem has no general solution but it has been rigorously
proven that in the simple case where the functions g; are
constants, the solution always exists. It can then be shown
that the value of the g; on region R; is the average denoted
c; of u restreinte R;. In this framework, energy can therefore
be rewritten as follows:

BCw) =2 [ [ (uley) — coldady v [ @l @
R; R;

with
o — Llotu@w)dedy

¢ fo dxdy

In our case, there are only two areas, limited by a curve. If we
denote C C 2 this deformed curve, the two zones are inside
C' and outside C.

A. Formulation bayesian formulation

The Bayesian formulation for the segmentation of image
is based on the assumption that the intensities of pixel in
every region are the realization of a “random” process with
a given density function. Based on the work of Leventon
[3], we introduce the statistical parameters as unknowns. We
first begin with the simplest case of two partitions. Therefore,
the image consists of two regions 2; and (5. Let p; be the
probability distribution in the region 2;:
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By using a level set ¢ as an implicit representation of the
interfaces {2; and {25, The corresponding energy equation (1)
can be written as:

E(p1,2,0% 5,0) = i [ 00(0(, )|V (6(x, y))|dedy +

pi(u | pi,o5) =

Jollog(2ma?) + WL ) (g (i, y))dudy

+ Jollog(2maf) + ML) (1 — H(g(a,y))dady

“)
This energy is minimized by an algorithm of minimization, the
optimal statistical parameters are estimated, and the energy is
minimized with regard to ¢. Both stages are repeated until
the convergence. For a function of level set, the form of the
optimal statistical parameters can be easily obtained from the
following equations:

Jo @) H(d(2.y))dwdy
M1 = —
J, H($(y))dady 5)
[, (@) (A= H(g(2,y))dedy
JoQ=H((y)))dzdy

H2 =

o2 ., (u(@y)—p1)? H((w,y))dady
e [, H(s(@y))dady
o2 — Ja(u@y) =)’ A= H(s(@y))dudy
2 |, A—H(s(z.y)))dedy

B. Equation d’Euler Lagrange

(6)

To minimize E(cy, ¢a, ¢) we write the Euler-Lagrange equa-
tion of ¢ [4], [5]. This amounts to cancel the differential of
energy at ¢ We obtain:
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III. BAYESIAN FORMULATION IN THE CASE MULTIPHASE

By using two functions of level set, we can identify four
”colors” by the following regions on 2 :

{1 > 0,02 > 0},{¢1 > 0,02 <0}, {¢1 <0, P2 >
0}7{¢1 <07¢2 <0}

The link between the function u and the four phases are [6],

[7]:
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Fig. 1. Two initial curves of evolution which share the image in four regions
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The resolution by the associated Euler-Lagrange equation
leads to evolution equations. By using the notation e;(z) =
log | i | +(I(x) — pi)"S7 (I(x) — ps), we obtained the
following Euler Lagrange equation [8]

%01 () = b (1 () [udiv (1922
+(e1 — ea)H(¢2) + (e3 — es)(1 — H(¢2))]

(1)

092 (2) = ol () [ndiv( (22 )

Fer - en)H (o) + (2 —ed)(L —H(g))]

uoo = {(z,y), d1(z,y) >0 and ¢z(z,y) >0}

w(z,y) =4 101 = {(z,y), ¢1(z,y) >0 and  ¢o(x,y) <0}
’ Ui = {(xay)a ¢1(x7y) <0 and ¢2(x,y) > O}
Uil = {(xay)v ¢1($7y) <0 and ¢2(xay) < 0}



IV. RESULTS

Figures (2) and (3) represent the results on a synthetic
image, by applying the bayesian formulation of Mumford Shah
for two types of initialization. The model manages to detect
the contour.

Fig. 3. Segmentation of a synthetic image by using a multicircle as an initial
contour. p = 2, size=256x256, Number of iterations=1500.

Fig. 2. Segmentation of a synthetic image by using a circle as an initial
contour. p = 4, size=256x256, Number of iterations = 10000.

In the Figure (3), we consider an initialization compound of
small circles. The figure (4) represents an example of appli-
cation for the case multiphase, the experience became more
sensitive to the stage of initialization and more complicated
regarding calculation.
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Fig. 4. Segmentation of a synthetic image by using the multiphase case. p
= 2, size=256x256, Number of iterations=1500.

The figure (5) show the results of real noisy images,



by applying the above algorithm(biphase segmentation), the
model gets to detect edges.
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Fig. 5. Segmentation of a real radiographic image. p = 10, size=256x256,
Number of iterations=800.

To study the case of the multiphase level sets method using
the formulation of Mumford and Shah, we apply the algorithm
on radiography welding image. Figure (6) shows the result of
the segmented image

Fig. 6. Segmentation of a real radiographic image by using the case
multiphase.

V. CONCLUSION

The Bayesian frame is more and more popular to solve
numerous badly put problems such as the segmentation of
the images. We have used a formulation obtained from the
Bayesian model of Mumford-Shah. The representation by level
set was introduced to define the partition, what leads naturally
to a frontally implicit evolution. In this work, We introduced an
evolution of the front based region stemming from a Bayesian
formulation which allows to integrate statistical models into a
geometrical approach.
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