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Abstract-This paper presents a comparative study about 

multimodel controls by RST controller. Two structures are 

adopted; namely the multimodel controls obtained by fusion of 

local controls and multimodel controls obtained by fusion of 

parameters of local RST controllers.  To emphasize the 

importance of the latter structure, a comparative study of the 

two structures described above is subsequently showed in a 

simulation example. This work proved the contribution of the 

RST control by fusion of parameters in improving the precision 

and disturbance rejection. 

Mots clefs— RST controller, multimodel control, fusion of 

locals controls, fusion of parameters. 

NOMENCLATURE 

RST :  a digital controller which composed by polynomials S, R     

and T. S means Simplify, R means Return and T means Track, it 

ensures regulation and tracking. 

PID  : Proportional-Integral-derivative 

SISO  : Single-input Single-output  

PLC  : Programmable Logic Controller 

I. INTRODUCTION 

Most of the encountered systems are complex. Modeling such 

systems is very hard, so researchers take some hypothesis to 

neglect some effects of some factors in order to simplify the 

mathematical representation. During the last decades, a new 

approach has appeared: the multimodel approach. It is based 

on the decomposition of a complex system into a set of linear 

simple systems. These local and simple systems form the 

basis of models. This approach is used for identification [1], 

[5], control [2], [3], [4] and diagnosis [18], [19]. In this paper, 

we focus on applying multimodel approach in control: we talk 

about “multimodel control “. It consists in developing partial 

controls for each local system. The multimodel control is 

obtained by the interpolation of these local controls [2].  

Thereby, this approach makes the identification, the control 

and the diagnosis of a complex system easier. It allows  the 

extension of some methods, conventionally used with linear 

systems, to be used with complex systems such as 

Luenberger’s observator [18].  

Among controllers used only for linear systems, we mention 

the RST controller, it is a digital controller based in the 

determination of digital filters R, S and T. This type of 

controllers ensures simultaneously regulation and tracking. It 

allows also the rejection of different types of disturbances [9]. 

The technological development favors the use of digital 

controllers, so many researchers are interested to develop, 

improve and broaden their use for many types of systems [20]. 

In this paper, we suggest the use of two types of multimodel 

controls [2] with RST controllers to control and to take 

advantage of RST controller’s performances for nonlinear 

systems. 

This paper is organized as follows: In the first section, the 

procedure of synthesis of RST controller will be presented. 

Then the multimodel control and their different types will be 

illustrated in section 3. Finally, in section 4, a simulation 

example will be used to implement this multimodel control in 

order to show its robustness and its performances with 

complex systems. 

II. RST CONTROLLER 

The technological development is in favor of digital 

controllers replacing analogic controllers.  

The advantages of digital controllers lie on the easy 

modification of their parameters and structures, the 

parameters adaptation in real time and the ease of 

implementation. [10] 

Many researches have been interested in the design of 

digital controllers [8], [11]. Others use them in some 

applications, such as: wind turbine control [4], regulation of a 

battery charger for electric vehicles [15] and blood pressure 

regulation [16] 

The polynomial RST controller is used for single-input 

single-output systems (SISO) (modeled by transfer function). 

It is characterized by two degrees of freedom: tracking and 

regulation [9], [11]. 

The canonical structure of RST controller is illustrated in 

Fig.1 

 

 

 

 

Fig.1: Canonical structure of RST controller 
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Where yc (t) is the set point or the desired tracking trajectory, 

y (t) is the output, u (t) is the control signal applied to model.  

 The controller polynomials are S (z
-1

), R (z
-1

) and T (z
-1

) 

while M (z
-1

) is the transfer function of process given by:  

 (   ) 
  d        

       
   

 Where     - )      1 
−1     

−       
−  as ‘m’ 

is the degree of the polynomial B and     - )      1 
−1  

   
−       

−  as ‘n’ is the degree of the polynomial A.  

The design of RST controller consists of: 

- Firstly, choosing the desired performances: stability, 

rapidity, disturbance rejection, tracking trajectory…) and 

writing the target model. 

- Then, calculating of the polynomials R, S and T.  

In [8] and [11], authors factorize the polynomials R and S into 

a fixed part and another part to be designed according to 

stability performances.  

 ( −1)    ( 
−1)   1( 

−1)     

 ( −1)    ( 
−1)   1( 

−1) 

The fixed parts   ( 
−1) and   ( 

−1) guarantees the rejection 

of some class of disturbance or avoid the excitation of the 

control signal at some frequencies. Reference [9] shows how 

to determine fixed parts of polynomials R and S in order to 

feature some performances. Indeed, they distinguished three 

formulas of   ( 
−1) : 

*   ( 
−1)  1   −1  

Where the type of disturbance rejection is a step 

   ( 
−1)  (1   −1)  

 Where the type of disturbance rejection is a ramp  

   ( 
−1)  1    −1   −   

Where         (   )  for disturbance rejection of 

harmonic signal. 
A) Determination of polynomials degrees 

The polynomial     - )      1 
−1     

−   contains 

the desired poles which have to be imposed to the system. In 

[8], the authors emphasize the problem of choosing 

performances for multimodel. They proposed two new 

approaches to achieve a robust controller in terms of stability 

and performances: the multimodel pole placement and multi 

objective optimization. 

Researchers in references [17] and [18] focused on the design 

of a robust controller by combining pole placement method 

and the study of sensitivity functions study: disturbance-input 

and disturbance-output, to ensure the robustness of 

performances and stability.  

The calculation of degrees of P, R and S polynomials    is 

determined according to the following rules [8], [9]: 

   ( )     ( )     ( )     (  )     (  )    1   

   ( 1)     ( )     (  )    1  

   ( 1)     ( )     (  )  1  

B) Determination of polynomials R and S 

The coefficients of R and S polynomials are obtained by 

resolving Bezout equation: 

 ( −1) ( −1)   −  ( −1) ( −1)   ( −1)  

 we resort so to look for X=[    1     1    ]
  and this by 

resolving the equation matrix: 

    −1     

Where the vector ‘p’ presents the poles which have to be 

imposed, p=[   1   ]
   and H is the Sylvester matrix [10]. 

C) Determination of polynomial  T 

During set point change, we hope that the output follows the 

y
*
(t), the output reference.  The reference transfer function 

presents the trajectory to track and is given by: 

  ( 
- ) 

 -     - )

    - )
  

 

The polynomial T ( −1 ) assures tracking, it is chosen to 

ensure: 

- The unitary static gain between output y(t) and output 

of reference model y
*
(t).  

- Compensation of dynamical regulation ( −1).  

From [9], we choose   ( −1)    ( −1)  

Where G={

1

 (1)
      (1)   

1         (1)   
 

To have the same dynamic of polynomial P (that means 

 ( −1)      
- )), the polynomial T is calculated by : 

 ( −1)  
 (1)

 (1)
 

For the design of digital PID controller, we choose  
 ( −1)   ( −1) 

D) Determination of control law 

From fig.1, we can write 

 ( −1) ( −1)   ( −1)  ( 
−1)   ( −1) ( −1)    

So, the control law u (k) is written: 

    ( )        1   (  1)      (   )   
         ( )   1    (  1)       (   )      
       ( )   1   (  1)       (   )    

E)  Example of application  

We propose, in this section, an RST controller model for 

second-order system described by the following transfer of 

function:   

 ( −1)  
   
−1   1 

− 

    1 
−1     

− 
 

So     ( ( −1))   ,    ( ( −1))  1 and   1 
By applying the equation (5), we choose the degree of P: 

   ( ( −1))     

The controller which will be designed allows the disturbance 

rejection of type step and it does not ensure any frequency 

locking. 
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From (2) and (6), we have:   

   ( 1( 
−1))  1    1  1  1   

 ( −1)  (1   −1)  (    1 
−1)    

From (7), we calculate the degree of  

    ( ( −1))    1  1      , 
 Where  ( −1)      1 

−1     
−  

The Sylvester matrix [10] used for this example with (16) and 

(17) is: 

  

(

 
 

          
 1                
    1
   
 

 1    
    1
   

    1
   
   

    
 1
 

 
  
 1)

 
 

      

And the vector p=[    1        ]
 . 

The equation (8) determines coefficients of polynomials R 

and S: X=[     1      1    ]
 , and we apply (10) to determine T. 

In next section, we will use the RST controller to control 

system presented by multimodel. Therefore, we will obtain a 

multimodel control based on RST controllers. 

III. MULTIMODEL CONTROL  

To build a multimodel control, we have firstly to define in 

advance the basis of models, then calculate validities and 

eventually get the multimodel control by commutation or by 

fusion. 

A) Determination of model basis  

  The principle of multimodel approach consists in the 

decomposition of dynamic behavior of the system to several 

functioning zones. Each zone is characterized by a local 

model that contributes, according to weighting function, to 

presentation of global system behavior. The set of local 

models presents the basis of models of the system [12]. In the 

literature, the most used methods for the determination of the 

basis of models are: the identification [5], [12], the 

linearization [12] and polytopic transformation [13], [14]. 

B) Validity computation 

The validity determines the degree of contribution of a local 

model in the presentation of global behavior of the system. 

Thereby, it‘s considered as a sensitive factor for the 

multimodel approach: it determines the capacity of local 

model to imitate the real system behavior in the 

corresponding functioning zones [1], [2].  

The residue is the difference between the real process 

output and the local output [1], [2] and [6]. So, it depends 

only on real output measurement and local outputs of the 

basis of models (see fig 2). To ensure that it is being always 

between 0 and 1, we normalize it by applying the following 

formula:  

        
  
∑   
 
  1

 

     with N the number of basis of models.  

The validity is:  

   1          

Disturbances affecting the validity may appear because of the 

influence of the 'good' model and 'bad' model [7]. As a 

remedy to this problem, it is resorted to use the notion of 

strengthened validity [1], [3]. Enhanced validity is calculated 

by the formula:          ∏ (1    
 
  1    ) 

In the example, the standard validity using reinforced 

         
       
∑        
 
  1

 

   

 

 

 

 

 

Fig.2: Calculation of validity by residue approach 

C) Calculation of multimodel control 

1) Commutation of controls  

In [2], [3] and [4], the authors study the notion of multimodel 

control and distinguish two cases depending on whether 

validity ranges   are disjoint or not. When validity ranges are 

disjoint, only one model is valid for each domain, this 

modeling is called ideal modeling. The multimodel control 

   and the multimodel output     are obtained by 

commutation as: 

{
      
      

  , i=1...N and N: number of local models.  

The control     coincides with the control of valid model in 

each moment and domain, it is easy to establish and to exploit 

but there are difficulties in determining switching rules 

especially when the number of models of basis is great. 

The principle of multimodel control by commutation is 

explained in fig.3. 

 

 

 

 

 

 

 

 

Fig.3: Switching control scheme 
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When validity domains have overlapping or are unknown in 

advance, two methods are used for obtaining the multimodel 

control: 

2) Control by fusion of local controls  

The global control is equal to the weighted sum of partial (see 

fig.4)  
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Fig.4: Fusion of local controls scheme 

3) Fusion parameter control 

 The fusion is made at the level of coefficients of local 

controllers. 

         

 

  1

 

Where,     is the parameter of local controller. For example, 

for an RST,    are the coefficients of polynomials R, S and T 

of local RST controllers. 

 

 

 

 

 

 

 

 

 

 

 

Fig.5: Scheme of control by fusion of parameters  

We denote by:  

- smi_j, rmi_j and   tmi_j : the coefficients of respectively 

polynomial S, R and T of the local RST controller, i, j is 

the number of the coefficient of respectively polynomial 

S, R and T. 

- si, ri and ti:  the degrees of respectively polynomials S, R 

and T of the local RST controller i.  

- Smm, Rmm, Tmm: are, respectively, the polynomials S, R 

and T of the multimodel RST controller.  

- umm : the control obtained from the RST multimodel 

controller. 

In fig.5, we present the principle of control by fusion of 

parameters. The obtained control law umm will be applied 

directly to the real system. 

In the objective of using RST controller to control system 

presented by multimodel, we are going to: 

 present system with a set of local linear models   

 design the local RST controller for each model 

 calculate control law by fusion of local control laws 

 Calculate control law by fusion of local RST 

controller’s parameters’. 

 Conclude the multimodel RST controller and 

enhance its performances by comparing the two type 

of multimodel control. 

IV. ILLUSTRATIVE  EXAMPLE  

The example is described by the following recurrent 

equation: [1] 

 ( )    1( )   (  1)    ( )   (   )    ( )  
 (  1)   1( )   (   ) 

 Where b0(k), b1(k), a1 (k) and a2(k) are the time-variable 

parameters as indicated in fig.6. 

 
 Fig.6: Parameters of non-linear system 

A) Methodology and results 

1) Basis of models 

The basis of models is determined in [1]. We distinguish 

the following transfer functions of local models:  

 1( 
−1)  
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  ( 
−1)  

               −1
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 3( 
−1)  
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Figure 7 shows step responses of local models y1, y2, y3 and 

real system y. we remark a coincidence between: 

- The response of local model n° 1 with the response of 

the real system in the time-range [0, 0.4]. 

- The response of local model n°2 with the response of the 

real system in the time-range [0.4, 0.8]. 

- The response of local model n°3 with the response of the 

real system in the time-range [0.8, 1.2]. 
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Fig.7: Coincidence between the local models and the real 

system  

2) Validity computation 

We apply the equations (18), (19), (20) and (21) to 

calculate the normalized strengthened validity. 

In each moment, we calculate the validity for each local 

model in open-loop to determine the valid model.  

Figure 8 shows the normalized strengthened validities of local 

models. This validity allows the design of multimodel RST 

controller from local controllers. 

 
Fig. 8: The strengthened validities of local models  

3) Calculation of multimodel control 

 For each local model, we synthesize an RST controller by 

determining the polynomials for each model using the method 

described in the section 2. The polynomial chosen with steady 

poles is  ( −1)  1      −1        −           
We impose this polynomial for the three transfer functions 

(23), (24) and (25); we build a local controller for each 

transfer function. Polynomials of these controllers are 

determined in the following table I 

TABLE I 

Polynomials of local R.S.T controllers 

Local 

models  
R( − ) S( − ) T( − ) 

Local 

model 1 
1.492 - 1.236  −1+ 

0.3812  −  
1   1 1 1 −1  
    1     −  

0.6368 

Local 

model 2 
2.028- 1.149  −1+ 

0.2482  −  
1   1      −1  
          −  

1.1281 

Local 

model 3 
3.01- 1.882  −1+ 

0.6886  −  
1   1      −1  
        −  

1.8167 

Let’s consider yc the set point, yi the output of model i, and ui 

the control of model i   avec i=1, 2, 3  

  The control laws corresponding to local controllers are 

written: 

  1( )  1 1 1   1(  1)    1     1(   )  
         ( )   1      1( )    1       1(  1)   
     1    1(   )     

   ( )  1       (  1)           (   )  
1        ( )           ( )   1 1      (  1)   
          1(   )    

  3( )  1      3(  1)         3(   )   
1  1     ( )      1   3( )   1       3(  1)  
          3(   )      

These control laws are shown in figure 9. 

 

Fig. 9: control laws of local models controlled by RST 

controllers 

a) Fusion  of local controls  

 In this case, the evolution of multimodel control is shown in 
figure 10 and equal to:  

   ( )   1( )   1( )    ( )    ( )   3( )   3( ) 

 
Fig.10: Fusion of local controls  

 

b) Fusion of parameters 

 we merge the coefficients of polynomial R,S and T according 

to validities: 
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The equations (34) - (39) give the coefficients of a new   

controller called   multimodel RST controller whose polynomials 

are:  

   ( 
−1)         1    

−1        
−   

   ( 
−1)         ( 1       ) 

−1   1   
−    

   ( 
−1)        

The figure 12 illustrates the control law of multimodel RST 

controller whose polynomials are Rmm, Smm  and Tmm. this 

control law is calculated by applying the equation (14). 
     ( )    ( 1       )       (  1)    1        (   ) 

        ( )         1( )

  1     (  1)         (   )  

 

Fig.11: Control by fusion of parameters of local RST 

controllers 

 

B) Interpretation and discussion  

To compare the two types of control, we examine the 

response of system by applying the control obtained by fusion 

of local controls and the response of system by applying the 

control obtained by fusion of parameters. In figure 12, we 

superpose the two curves of outputs to well visualize the 

effect of the two types of controls on the output of system.   

We verify that the control by fusion of parameters allows a 

better smoothing at the level of transitions zones between 

local models than the control by fusion of local controls. 

 
Fig. 12: system output by applying the control by fusion of 

local controls and fusion of parameters 

The figure 13 shows static error of the system by applying 

the two types of controls. 

 
Fig. 13: static error by applying the two types of controls 

We observe that the static error by applying the control 

obtained by fusion of parameters is inferior to that obtained 

by fusion of local controls. The difference between the two 

static errors appears exactly at the transition zones, between 

local models. Simulation results prove that control by fusion 

of parameters ensures a best static error compared with 

control by fusion of local controls.  

To test the robustness of the considered controls, we add a 

step disturbance at the output of system. 

 

Fig.14: responses of system when applying the two type of 

controls with an output disturbance. 

Figure 14 depict the influence of disturbance in the response 

of system with two types of controls. This figure shows that 

only the control by fusion of parameters ensures the 

disturbance rejection. However, the control by fusion of local 

controls does not ensure the disturbance rejection, although 

each local control ensures the disturbance rejection for the 

response of its corresponding local model. 

Based on these results, we conclude that the fusion of 

parameters transfers the performances of local controllers to 

the RST multimodel controller. This controller ensures a good 

regulation and tracking. The obtained multimodel RST 

controller is a digital controller for complex system presented 

by multimodel with linear model basis.  

V. CONCLUSIONS  

This paper emphasizes the migration of control techniques of 

linear systems (regulation by RST) to nonlinear systems due 

to the multimodel approach. We have built an RST controller 

applicable to the nonlinear systems. Indeed, the study of 

academic example shows the accuracy and the robustness of 

multimodel RST controller obtained by parameters fusion of 
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local RST controllers. This robustness is proved by testing the 

disturbance rejection and comparing it to the multimodel 

control obtained by fusion of local controls. 

The implementation of control law of multimodel RST 

controller to control nonlinear system will be an easy mission 

at a programmable PLC, this is a conceivable prospect.  
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