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Abstract—In this paper, we propose to design a new family of 

discrete-time chaotic systems based on the use of the multimodel 

approach.  This approach is used to represent a way to generate 

new family of discrete-time chaotic systems, from p discrete time 

chaotic basis models. Our results are illustrated on the specific 

case of a new discrete-time chaotic multimodel based on two 

chaotic 2D Hénon maps with two different sets of parameters 

leading to different behaviors. The chaos characterization of 

obtained multimodels is performed using bifurcation diagrams.  

 

Index Terms—Chaos, multimodels, discrete-time, Hénon map, 

bifurcation diagram   

 

I. INTRODUCTION 

In the recent years, there is a growing interest to the use of 

chaos-based techniques in the secure communication field. 

Chaotic systems proved that they are efficient to build robust 

cryptosystems due to their several features especially the noise-

like time series and the sensitive dependence on initial 

conditions [1-4]. 

In order to have an efficient cryptosystem, some rules, 

detailed in [5], need to be applied where the complexity of the 

chaotic used system is considered as a fundamental issue for all 

types of cryptosystems. 

In parallel, a global approach based on multiple Linear 

Time Invariant (LTI) models defined around different 

operating point has received a significant attention. This 

multimodel approach is a convex polytopic representation that 

can be obtained by the interpolation of LTI models. Every 

model represents a valid operating range. Three techniques are 

used to obtain the mutimodel either by identification [6-9] 

when input and output data are available or by linearization 

around different operating points or by polytopic 

transformation[6-9], if we have the analytic model. Numerous 

works was published concerning the mutimodel approach and 

its stability study [6-9]. 

In this paper, the mutimodel approach is used to build a 

new class of discrete-time chaotic systems which constitutes an 

extension of previous results of continuous chaotic processes 

using the mutimodel approach. In [10] Cherrier and Boutayeb 

have proposed to use the definition of multimodel to 

interpolate continuous chaotic subsystems. It’s proven that the 

resulting system has a complex chaotic behavior. 

 

The paper is organized as follows: Section II presents the 

way to design a multimodel based on p discrete time chaotic 

subsystems having different parameters and interpolate them 

using the appropriate activation function. The specific case of 

discrete time multimodels based on two 2D Hénon maps is 

presented in section III. It is also tested in this section; the 

chaotic behaviors through bifurcation diagrams and concluding 

remarks are given. In section IV, a case of interpolation of a 

chaotic and a non-chaotic 2D Hénon maps is considered. 

 

 

II. BUILDING A NEW CHAOTIC DISCRETE-TIME 

MULTIMODEL: PROBLEM STATEMENT 

Consider the n-dimensional discrete-time in Lurie systems 

as follows 

                      

             ( 1) ( ) ( ( )), 1, 2,...,x k A x k f x k i p
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kT  is the discrete-time, T sampling time,  
n

x R  is the state 

vector Ai , 1, 2,...,i p , are  n n constant matrices and 

( ( ))f x ki , 1, 2,...,i p  ,  nonlinear vector. 

The mutimodel approach proposed in [10] is extended to the 

case of discrete-time chaotic systems to interpolate p  

subsystems having different behaviors. The new multimodel, 

resulting from the interpolation of systems (1) with different 

sets of parameters, is described as following  
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where  y   is the output vector ,  C   a constant matrix with an 

appropriate size and i , 1, 2,...,i p  activation functions 

modeling the weighting of the sub-model i ,  characterized in 

the global model, by Ai , 1, 2,...,i p  such us  
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Since the multimodel is built in order to be integrated in a 

cryptosystem and for the purpose of increasing security, the 

activation functions have to be chosen such as they ensure a 

kind of “mixing” between the different sub-models. It doesn’t 

have to favor a model, but allows a real transition between 

them. This allows in one hand, to enhance the complexity of 

the system and, secondly, to ensure a continuous 

synchronization, in the sense that there is no loss of 

synchronization [10]. 

In the next section, are proposed two multimodels 

corresponding to (2) built from two subsystems having two 

different behaviors using an appropriate activation function.  

The first mutimodel is a combination of two chaotic systems 

and the second a combination of a chaotic and a non-chaotic 

system. Bifurcation diagrams of the obtained multimodels  are 

used to show if they are  chaotic or not  .         
 

III. IMPLEMENTATION OF THE CHAOTIC 2D HÉNON 

MAPS 

In this section, for this first example, we have chosen as 

base models two systems of 2D Hénon maps, with two 

different sets of parameters. Considered first discrete-time 2D 

Hénon subsystem, which is described as follows [10-14] 
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where      ,
1 2

x x k x k    is the state vector and 
1

a  and 

1
b  are bifurcation parameters of Hénon map. 

To build the multimmodel, the system (4) is interpolated 

with the following Hénon map using two different sets of 

parameters characterizing by two different chaotic behaviors.  
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The corresponding attractors are found respectively in Fig. 1 

and Fig. 2. 

The parameters chosen for the two basic models (4) and (5) are 

such as  
1

a  = 1.4, 
1

b = 0.3, 
2

a =1.15, 
2

b =0.4 with initial values  

   0 0, 0, 0x   [10-14]. 

                                          

 

     Fig 1. The chaotic attractor of the Hénon map for 1a  = 1.4, 1b =   0.3 

     and
 
   0 0,0x 

 
 

  

Fig 2. Chaotic attractor of Hénon map for 
2

a =1.15, 
2

b =0.4 and      

   0 0, 0x 
 

 

Once can note that the first subsystem Hénon map does not 

have a strange attractor for all values of the parameters 
1

a  and

1
b . For example, by keeping 

1
b  fixed at 0.3, the bifurcation 

diagram of Fig. 3 shows that for  0.4 1.1
1

a   the Hénon 

map has a stable periodic orbit. 

Besides, as presented in Fig. 4, for 0.4
2

b   and 1
2

a  , the 

second subsystem discrete-time Hénon map (5) has a chaotic 

behavior, illustrated by the bifurcation diagram of Fig. 4.  

The chosen activation function is described as following [10] 

               
         ( ) (1 ( )) / 2

2 2
x tanh x                             (6) 



where   is a parameter set so that the μ function performs a 

real transition between the two Hénon subsystems. 

The resulting multi-model simulations are shown in Fig. 5 ,   

was set at the value of  0.5. 
 

 

Fig 3. The bifurcation diagrammen of the Hénon mapfor 1a  variable,  

1b =0.3, and    0 0, 0x 
 

  

Fig  4.  Bifurcation diagramme Hénon map for 2a  variable, 2b =0.4 and 

   0 0, 0x 
 

 

Bifurcation diagram Fig. 6a shows that the chaotic behavior of 

the multimodel is obtained for  0.92,1.41
1

a  , such as

0.3
1

b  , 
2

b =0.4 and 1.15
2

a  while, for the same fixed 

values, the chaotic behavior of (4) is obtained for 

 1.15,1.41
1

a 
 
as shown in Fig.3. The interval size of the 

multimodel’s 1a  values originating chaos is larger than those 

of  system (4). The same applies is obtained for the 

multimodel by varying the parameter 
2

a  and for the same 

fixed values. In fact, as it is shown in Fig.6b the chaotic 

behavior of the multimodel is obtained for  1.1,1.2
2

a  .  

While the chaotic behavior of (5) is obtained for 

 0.65,1.2
2

a  . The mutlimodel obtained from the 

combination of two chaotic systems (4) and (5) gives us a 

larger interval of parameters values which is advantageous to 

the security of the encrypting scheme [5].  
 

 

Fig 5. The chaotic attractor of the multimodel for 1a = 1.4, 1b  =0.3, 

2a =1.15, 2b = 0.4 and    0 0, 0x   

          

Fig 6a .Bifurcation diagram of the discrete-time multimodel   for 1a variable, 

1b  =0.3, 
2

a =1.15, 
2

b =0.4 and    0 0, 0x     

 

 
Fig 6b.Bifurcation diagram of the discrete-time multimodel for 2a variable, 

1a = 1.4, 1b = 0.3, 2b =0.4  and    0 0, 0x   



IV. INTERPOLATION OF  A CHAOTIC AND A NON-

CHAOTIC 2D HÉNON MAPS  

In this section, for this second example, we have chosen as 

base models two systems: a chaotic 2D Hénon subsystem (4) 

with fixed parameters 
1

a = 1.4, 
1

b  =0.3, and a non-chaotic 2D 

Hénon subsystem (5). 

For the set parameter 0.3,
2

a   0.9
2

b    with initial values

   0 0, 0x  , the subsystem doesn’t present a chaotic 

behavior as it is shown in Fig. 7. In fact, the figure doesn’t 

illustrate a strange attractor and the bifurcation diagram Fig. 8 

shows that chosen parameters doesn’t lead to chaos.  

 

         

Fig 7.  Attractor of the non chaotic Hénon map for 0.3,
2

a   0.9
2

b  
    

and    0 0, 0x   

 

        

Fig 8.  Bifurcation diagram of the Hénon map  for 
2

a  variable, 0.9
2

b  

and    0 0, 0x   

 

The simulation results of Fig. 9 don’t give a clear illustration of 

the multimodel attractor obtained from the interpolation of the 

first subsystem (4) characterized by 
1

a  = 1.4, 
1

b = 0.3 and the 

second subsystem (5) characterized by 0.3,
2

a   0.9
2

b    

and for  the chosen activation function (6).  

However, bifurcation diagram of Fig. 10 shows that for the 

chosen parameter the multimodel doesn’t have a chaotic 

behavior. 
 

          

Figure 9. Attractor of the obtained multimodel for 
1

a  = 1.4, 
1

b = 0.3, 

0.3,
2

a   0.9
2

b      and  0 0, 0x   

         

Figure 10. Bifurcation diagram of the multimodel for 
1

a variable, 
1

b = 0.3, 

0.3,
2

a   0.9
2

b      and  0 0, 0x   

 

V. CONCLUSION 

 

The multimodel approach is used in this paper to build 

discrete-time chaotic multimodels. It has been shown, by the 

use of discrete time Hénon map 2D, that the interpolation of 

two chaotic systems can enhance the complexity of the chaos 

however mixing a non-chaotic system with chaotic one doesn’t 

lead necessary to chaos. Bifurcation diagrams illustrate the 

range of possible parameters, giving to the multimodel, a 

chaotic behavior.  
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