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Abstract—This paper deals with the modeling and optimal
Linear Quadratic Gaussian (LQG) controller design for a
Quadrotor Vertical Take-Off and Landing (VTOL) type of
Unmanned Aerial Vehicle (UAV). Such a LQG-based control
strategy is investigated to stabilize the attitude and altitude
dynamics of the studied Quad rotorcraft. All aerodynamic forces
and moments of the Quadrotor UAV are described within an
inertial frame and a dynamical model is obtained thanks to the
Newton-Euler formalism. An optimal LQG controller is then
designed for the attitude and altitude stabilization of the plant,
linearized around an equilibrium flight point. Several simulation
results are carried out in order to show the effectiveness and
robustness of the proposed LQG-based flight stabilization
approach.

Keywords-: Quadrotor UAV, modeling, optimal LQG control,
attitude and altitude stabilization.

I. INTRODUCTION

The Unmanned Aerial Vehicles (UAVs), particularly the
Quadrotors, are flying robots without pilot which are able to
conduct missions in autonomous or half-autonomous modes
also in hostile and disturbed environments [1], [2]. Among
the tasks to be conducted with these robots are found military
acknowledgment, monitoring missions and civilian missions
such as the inspection of dams and border monitoring, the
prevention of forest fires and others [3], [4].

In recent years, these Quadrotors have seen a great
evolution in terms of the miniaturization of these actuators
and sensors, the modeling and especially the flight control
design [5], [6], [7]. This explains the interest shown by many
researchers to study the flight dynamics and the control laws
of these kinds of vehicles. In [3], [8], the authors propose
a PID controller to drive the position and the attitude of a
Quadrotor. In [3], [9], [10], a Sliding Mode Control (SMC)
approach, applied to a non-linear model of the Quadrotor, is
used to stabilize its dynamics. The works in [7], [3] illustrate
the Backstepping approach for a path tracking of a Quadrotor.
In [11], [12], the authors developed a Model Predictive
Control (MPC) strategy for the flight stabilization of such a
vehicle.

So, a dynamical model of this type of rotorcraft UAVs,
i.e. the Quadrotor, is established in this paper thanks to

the Newton-Euler formalism. All aerodynamics thrust and
drag forces and torques, governing the VTOL flight of the
Quadrotor, are described. Based on the linear model of
this studied system, obtained around an equilibrium flight
operating point, a Linear Quadratic Gaussian (LQG) based
control structure is proposed for the position and attitude
dynamics stabilization.

The remainder of this paper is organized as follows. Section
II presents the aerodynamic forces and torques of the Quadro-
tor in VTOL flight. A dynamical model is then established
thanks to the Newton-Euler formalism. In Section III, an
optimal LQG controller is designed to stabilize the position
and the attitude of the derived Linear Time-Invariant (LTI)
system around an equilibrium operating point. All obtained
simulation results are presented and discussed in Section IV.
Section V concludes this paper.

II. MODELING OF THE QUADROTOR UAV

A. System description and aerodynamic forces

A Quadrotor is an UAV with four rotors that are controlled
independently. The movement of the Quadrotor results
from changes in the speed of the rotors. The structure of
the Quadrotor in this paper is assumed to be rigid and
symmetrical. The center of gravity and the body fixed frame
origin are coincided. The propellers are rigid and the thrust
and drag forces are proportional to the square of propellers
speed.
The studied Quadrotor rotorcraft is detailed with their body
and earth frames RB (O, x, y, z) and RE (o, ex, ey, ez)
respectively, as shown in Fig. 1.

Let consider the following model partitions naturally into
translational and rotational coordinates:

ξ = (x, y, z) ∈ R3, η = (ϕ, θ, ψ) ∈ R3 (1)

where ξ = (x, y, z) denotes the position vector of the
center of mass of the Quadrotor in the fixed inertial frame,
η = (ϕ, θ, ψ) denotes the attitude of the Quadrotor given by
the Euler angles ϕ, θ and ψ.
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We note that ϕ is the roll angle around the x-axis, θ is the
pitch angle around the y-axis and ψ are the yaw angle around
the z-axis. All those angles are bounded as follows:

−π
2
< ϕ <

π

2
(2)

−π
2
< θ <

π

2
(3)

−π < ψ < π (4)

Each motor Mi (i=1, 2, 3 and 4) of the Quadrotor produces
the force Fi which is proportional to the square of the angular
speed ωi. Known that the motors are supposedly turning only
in a fixed direction, the produced force Fi is always positive.
The front and rear motors (M1 and M3) rotate counter-
clockwise, while the left and right motors (M2 and M4) rotate
clockwise. As given in [3], [12], the gyroscopic effects and
aerodynamic torques tend to cancel in trimmed flight thanks
to the mechanical design of the Quadrotor. The total thrust F
is the sum of individual thrusts of each motor. Let denote by
m the total mass of the Quadrotor and g the acceleration of
the gravity. The orientation of the Quadrotor is given by the

Fig. 1: Mechanical structure of the Quad rotorcraft.

rotation matrix R : RE → RB which depends on the three
Euler angles (ϕ, θ, ψ) and defined by the following equation:

R (ϕ, θ, ψ) =

 cψcθ sϕsθcψ − sψcθ cϕsθcψ + sψsϕ
sψcθ sϕsθsψ + cψcθ cϕsθsψ − sϕcψ
−sθ sϕcθ cϕcθ


(5)

where c (.) = cos (.) and s (.) = sin (.).

During its flight, the Quadrotor is subjected to external
forces like the gusts of wind, gravity, viscous friction and
others which are self generated such as the thrust and drag
forces. In addition, external torques are provided mainly by
the thrust of rotors and the drag on the body and propellers.
Moments generated by gyroscopic effects of motors are also

noted.

The thrust force generated by the ith rotor of the Quadrotor
is given by [5], [13]:

Fi =
1

2
ρΛCT r

2ω2
i = bω2

i (6)

where ρ is the air density, r and Λ are the radius and the
section of the propeller respectively, CT is the aerodynamic
thrust coefficient.

The aerodynamic drag torque, caused by the drag force at
the propeller of the ith rotor and opposed the motor torque, is
defined as follows [14]:

δi =
1

2
ρΛCDr

2ω2
i = dω2

i (7)

where CD is the aerodynamic drag coefficient.

The pitch torque is a function of the difference (F3 − F1).
The roll torque is proportional to the term (F4 − F2) and the
yaw one is the sum of all reactions torques generated by the
four rotors and due to the shaft acceleration and propeller
drag. All these pitching, rolling and yawing torques are defined
respectively as follows [15], [3]:

τθ = l (F3 − F1) (8)

τϕ = l (F4 − F2) (9)

τψ = C (F1 − F2 + F3 − F4) (10)

where C is a proportional coefficient and l denotes the
distance from the center of each rotor to the center of gravity.

Two gyroscopic effects torques, due to the motion of the
propellers and the Quadrotor body, are additively provided.
These moments are given respectively by [13], [10]:

Mgp =
4∑
i=1

Ω ∧
[
0, 0, Jr(−1)

i+1
ωi

]T
(11)

Mgb = Ω ∧ JΩ (12)

where Ω is the vector of the angular velocity in the fixed
earth frame and J = diag [Ix, Iy, Iz] is the inertia matrix of
the Quadrotor, Ix , Iy and Iz denote the inertias of the x-axis,
y-axis and z-axis of the Quadrotor, respectively, Jr denotes
the z-axis inertia of the propellers rotors.

The Quadrotor is controlled by independently varying the
speed of their four rotors. Hence, these control inputs are
defined as follows:

u1
u2
u3
u4

 =


F
τϕ
τθ
τψ

 =


b b b b
0 −lb 0 lb

−lb 0 lb 0
d −d d −d



ω2
1

ω2
2

ω2
3

ω2
4


(13)

where b > 0 and d > 0 are two parameters depending on the
air density, the geometry and the lift and drag coefficients of



the propeller as given in Eq. (6) and Eq. (7), and ω1,2,3,4 are
the angular speeds of the four rotors.

From Eq. (13), it can be observed that the input u1 denotes
the total thrust force on the Quadrotor body in the z-axis,
the inputs u2 and u3 represent the roll and pitch torques,
respectively. The input u4 represents the yawing torque.

B. Modeling with the Newton-Euler formalism

While using the Newton-Euler method for modeling, the
Newton laws lead to the following motion equations of the
Quadrotor [15], [6], [3], [13]:{

mξ̈ = Fth + Fd + Fg
JΩ̇ = M −Mgp −Mgb −Ma

(14)

where Fth = R (ϕ, θ, ψ)

[
0, 0,

4∑
i=1

Fi

]T
denotes the total

thrust force of the four rotors, Fd = diag (κ1, κ2, κ3) ξ̇
T is

the air drag force which resists to the Quadrotor motion,
Fg = [0, 0,mg]

T is the gravity force, M = [τϕ, τθ, τψ]
T

represents the total rolling, pitching and yawing
torques, Mgp and Mgb are the gyroscopic torques and

Ma = diag (κ4, κ5, κ6)
[
ϕ̇2, θ̇2, ψ̇2

]T
is the torque resulting

from the aerodynamic frictions.

Substituting the position vector and the forces expressions
into Eq. (14), we obtain the following translational dynamics
of the Quadrotor [12], [10], [5]:

ẍ =
1

m
(cϕcψsθ + sϕsψ)u1 −

κ1
m
ẋ

ÿ =
1

m
(cϕsψsθ − sϕcψ)u1 −

κ2
m
ẏ

z̈ =
1

m
cϕcθu1 − g − κ3

m
ż

(15)

From the second part of Eq. (14), and while substituting
each moment by its expression, we deduce the following
rotational dynamics of the rotorcraft [5], [14], [13]:

ϕ̈ =
(Iy − Iz)

Ix
θ̇ψ̇ − Jr

Ix
Ω̄r θ̇ −

κ4
Ix
ϕ̇2 +

1

Ix
u2

θ̈ =
(Iz − Ix)

Iy
ϕ̇ψ̇ − Jr

Iy
Ω̄rϕ̇− κ5

Iy
θ̇2 +

1

Iy
u3

ψ̈ =
(Ix − Iy)

Iz
θ̇ϕ̇− κ6

Iz
ψ̇2 +

1

Iz
u4

(16)

where κ1,2,...,6 are the drag coefficients and
Ω̄r = ω1 − ω2 + ω3 − ω4 is the overall residual rotor
angular velocity.

Taking X =
(
ϕ, ϕ̇, θ, θ̇, ψ, ψ̇, x, ẋ, y, ẏ, z, ż

)T
∈ R12 as

state vector, the following state-space representation of the

studied Quadrotor is obtained as follows:

Ẋ = f (X,u) =



ẋ1 = x2

ẋ2 = a1x4x6 + a3Ω̄rx4 + a2x
2
2 + b1u2

ẋ3 = x4

ẋ4 = a4x2x6 + a6Ω̄rx2 + a5x
2
4 + b2u3

ẋ5 = x6

ẋ6 = a7x2x4 + a8x
2
6 + b3u4

ẋ7 = x8

ẋ8 = a9x8 +
1

m
(cϕcψsθ + sϕsψ)u1

ẋ9 = x10

ẋ10 = a10x10 +
1

m
(cϕsθsψ − sϕcψ)u1

ẋ11 = x12

ẋ12 = a11x12 +
cϕcθ

m
u1 − g

(17)
where:
a1 =

Iy − Iz
Ix

; a2 = −κ4
Ix

; a3 = −Jr
Ix

; a4 =
(Iz − Ix)

Iy
;

a5 = −κ5
Iy

; a6 = −Jr
Iy

; a7 =
(Ix − Iy)

Iz
;

a8 = −κ6
Iz

; a9 = −κ1
m

; a10 = −κ2
m

;

a11 = −κ3
m

; b1 =
1

Ix
; b2 =

1

Iy
; b3 =

1

Iz

III. OPTIMAL LQG CONTROLLER DESIGN

A. Basic concepts of the LQG control

In order to design an optimal LQG controller for the
Quadrotor, a linearized model is derived from the nonlinear
system of Eq. (17). The state-space form, used in this control
approach, is on a stochastic system and given by:{

ẋ = Ax+Bu+ v
y = Cx+ w

(18)

where w and v are the disturbance process and measurement
noise inputs, respectively, x(t) is the system state, u(t) denotes
the control input and y(t) is the system output. The variables w
and v are usually assumed to be Gaussian stochastic processes
with constant covariance matrices W and V given by [16],
[17]:

E
{
vvT

}
= V ≥ 0 and E

{
wwT

}
= W > 0 (19)

The LQG control approach is based on the minimization of
the following quadratic optimization criterion [8]:

JLQG = lim
h→∞

E

{
1

h

∫ h

0

(
xTQx+ uTRu

)
dt

}
(20)

where Q and R are the weighting matrices of the Linear
Quadratic (LQ) control[18], [16], such as Q = QT ≥ 0 and
R = RT > 0 , E {.} denotes the expectation operator.



The resolution of this above problem is achieved according
to the well known Separation Theorem [17], which consists
to:

• Determine a KALMAN estimator allowing to reconstitute
the estimated x̂ of the state x;

• Calculate a state feedback control law expressed as u =
−Kx̂, where K is the gain of the state feedback which
is calculated by considering the classical LQ problem.

So, according to this theorem the state-space representation of
this observer-based controller is given as follows:

˙̂x = Ax̂+Bu+L(y − ŷ)
ŷ = Cx̂
u = −Kx̂

(21)

where L denotes the gain of the KALMAN estimator and is
defined as follows:

L = PCTW−1 (22)

with P is the positive semi-definite solution of the following
algebraic RICCATI equation :

PAT +AP − PCTW−1CP + V = 0 (23)

B. LQG controller design for the Quadrotor
The state and input matrices of the linearized state-space

form (18) are given respectively by the following Jacobian
expressions:

A =


∂f1

∂x1|x=x0
∂f1

∂x2|x=x0 · · · ∂f1
∂x12|x=x0

∂f2
∂x1|x=x0

∂f2
∂x2|x=x0

. . .
...

...
...

. . .
...

∂f12
∂x1|x=x0 · · · · · · ∂f12

∂x12|x=x0

 ∈ R12×12

(24)

B =


∂f1

∂u1|u=u0
∂f1

∂u2|u=u0 · · · ∂f1
∂u4|u=u0

∂f2
∂u1|u=u0

∂f2
∂u2|u=u0

. . .
...

...
...

. . .
...

∂f12
∂u1|u=u0 · · · · · · ∂f12

∂u4|u=u0

 ∈ R12×4

(25)
where (x0, u0) is an equilibrium operating point of the non-
linear system of Eq. (15) and Eq. (16) given by:

(x0, u0) =


x01,2,3,4,5,6,8,10,12 = 0
x07,9,11 = constant
u01 = mg
u02,3,4 = 0

(26)

The LQG design for the Quadrotor altitude and attitude
stabilization problem is solved under the MATLAB/Simulink
environment. Through a trial-error process, we choose the
weighting matrices Q and R as follows:

Q = 2× 10−1I12 (27)

R =


10−2 0 0 0
0 10 0 0
0 0 10 0
0 0 0 10

 (28)

where I12 is the 12× 12 identity matrix.

After that the noise covariance matrices are determined, we
solved such a problem to find the state feedback gain matrix
K as well as the KALMAN estimator gain L. These two gains
are given by Eq. (29) and Eq. (30):

L =



0.29 0.99 0 0 0 0 0 0 −0.03 −0.95 0 0
0.99 826.13 0 0 0 0 0 0 0 −0.23 0 0
0 0 0.29 0.99 0 0 0.03 0.95 0 0 0 0
0 0 0.99 825.91 0 0 0 0.02 0 0 0 0
0 0 0 0 1 0.99 0 0 0 0 0 0
0 0 0 0 0.99 413.01 0 0 0 0 0 0
0 0 0.03 0 0 0 0.99 0.95 0 0 0 0
0 0 0.95 0.02 0 0 0.95 06.11 0 0 0 0

−0.03 0 0 0 0 0 0 0 0.99 0.95 0 0
−0.95 −0.02 0 0 0 0 0 0 0.95 6.11 0 0

0 0 0 0 0 0 0 0 0 0 0.99 0.86
0 0 0 0 0 0 0 0 0 0 0.86 6.44


(29)

K =

[
0 0 0 0 0 0 0 0 0 0 1 1.40

0.620 0.098 0 0 0 0 0 0 −0.070 −0.096 0 0
0 0 0.620 0.098 0 0 0.070 0.096 0 0 0 0
0 0 0 0 0.070 0.078 0 0 0 0 0 0

]
(30)

IV. SIMULATION RESULTS AND DISCUSSION

In order to stabilize the position and the attitude of the
studied Quadrotor, we choose the following desired setpoints
for the controlled outputs:

Xref =


xref
yref
zref
ψref

 =


2
1
1
1

 (31)

After implementation, the simulation results are summarized
in Fig. 2, Fig. 3 and Fig. 4. For this purpose, recall that we
retain the values v = 0.01 and w = 0.1 for the noises on the
states and outputs.
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Fig. 2: LQG control based position response of the Quadrotor.
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Fig. 3: LQG control based attitude response of the Quadrotor.
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Fig. 4: LQG control based angular velocity response of the
Quadrotor.
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Fig. 5: LQG control based linear velocity response of the
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It can be observed from these simulation results that the
estimated and real system states are close and similar for
the position and the yaw dynamics. The estimation errors
are negligible and a good reconstitution of the system state
is obtained. On the other hands, the stabilization objectives
of the LQG controller are made with a satisfied tracking
performance. The effectiveness of the proposed LQG control
approach is guaranteed.

V. CONCLUSION

In this paper, we established a nonlinear dynamical model
of a Quadrotor UAV using the Newton-Euler formalism,
extensively adopted in the literature. All aerodynamic forces
and moments of the studied Quadrotor UAV are described
within an inertial frame. Such an established dynamical model
is then used to design a LQG controller for the stabilization
of the altitude and attitude of the rotorcraft. Parameters design
of the proposed LQG control approach, i.e., the weighting
matrix R and Q are obtained thanks to several trials-errors
procedures. Finally, some demonstrative simulation results are
obtained under the MATLAB/Simulink environment in order
to show the effectiveness of the proposed flight stabilization
approach. Forthcoming works deal with the optimization of
all LQG control parameters based on metaheuristics-based
techniques and within the discrete-time framework.
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