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Abstract—This paper presents an overview of important 

issues that arise in the design of the on-line robust differentiator. 

So, some numerical robust differentiation algorithms based on 

two well-known different approaches are studied. The first 

algorithm is proposed by Levant who relied on the sliding mode 

technique to define a finite time differentiators. The second one is 

a new scheme of the sliding mode differentiator. The last 

algorithm which is introduced by Fliess and co-authors, is based 

on the algebraic approach. In this paper, a comparative study 

between these three forms of differentiators is developed in order 

to discuss the strengths and weaknesses of each differentiator 

with fixed some specific criteria.  

Keywords—numerical differentiator; algebraic approach; 

sliding mode technique; simulations. 

I. INTRODUCTION 

This paper discusses the theoretical well-studied problem 
of the derivatives estimation of measured signals. The large 
application of the state derivatives estimation leads to many 
research works in different fields. Some examples of these 
works can be cited: parameter identification [1-2], fault 
detection for flat systems [3], velocity and acceleration 
feedback for electro-pneumatic systems [4] and DC motor 
control [5]. The main challenge for all these applications is 
differentiation in the presence of noises, especially in real time 
where the noises are not obvious to model. In fact, it is difficult 
to distinguish in practice between the noise and the basic 
signal. Even for the usual assumption which considers that the 
noises correspond to the small high-frequency, the estimation 
of any derivative can be destroyed. Indeed, the practical 
differentiation is a trade-off between exact differentiation and 
robustness with respect to noises. The possible choices to 
obtain good performances of the proposed approaches deal 
with the problem of finding suitable linear or nonlinear filters 
able to reduce the effect of noise while trying to leave the 
based signal unchanged and without phase shift.  

In the literature, the traditional approaches consist of using 
the finite difference method such as the Euler backward 
difference method. The last one is simple to implement and the 
most common numerical method that can be used in real time. 
However, this approach gives erroneous results with the 
sensors noises. To avoid this problem, a low-pass filter can be 
used to attenuate the noise on the estimated signals, but with 
introducing an inevitable phase delay. Other rigorous 
approaches consist of casting the problem of derivative 
estimation as an observer-design problem. In this case, the 
knowledge of the system/noise model is necessary. In [6-7], the 
proposed differentiator is a high gain observer, that is a 

Luenberger state observer with particular pole placement. 
However, to ensure an asymptotic convergence to the 
derivative, the observer gain should tend to infinity. So, the 
parameter's setting makes this method sensitive to noises or 
perturbations. The case of random noises/perturbations is 
addressed by Kalman observers whose gains are computed by 
the resolution of an algebraic Ricatti equation, [8]. Other 
example for state estimation is based on nonlinear observer 
theory such as a backstepping observers [9]. Unfortunately, the 
lack of information or an insufficient knowledge on the system 
dynamics makes the implementation of the linear or nonlinear 
state observers difficult. 

To overcome this problem, some researchers looked at the 
synthesis of robust observers taking into account parametric 
uncertainties. In this case, the well-known sliding mode 
technique is used. In [10-11], a sliding mode observer gave 
interesting results. In [12], a high gain observer based on the 
sliding mode is proposed. In [13], the super-twisting algorithm 
was modified in order to observe a velocity for uncertain 
mechanical systems. In the other cases, the design of a 
differentiator is unavoidable. This problem is a classical aim in 
signal processing theory. To build such scheme, some features 
about the signal and the noise must be considered. However, in 
many cases the structure of the signal is unknown except from 
some differential inequalities. In such case, the approaches that 
are based on truncated Taylor series of the signal to be 
differentiated are potentially interesting [14]. Alternative 
approaches based on the sliding mode technique can also be 
used [15]. Among the others, a possible choice is to implement 
a sliding mode differentiator, as the one proposed by Levant 
[16]. This algorithm has a simple form and is therefore easy to 
be implemented. In practice, the performance of these 
algorithms depends on the choice of the parameter values. 
Indeed, these parameters depend on the input signal, according 
to the Lipschitz constant of the signal derivative. This constant 
is usually unknown accurately beforehand, especially if the 
signal is noisy. To avoid this problem, different research works 
were proposed to modify the classical 1st-order sliding mode 
differentiator (Super-Twisting), see for instance, [17-20]. 

In this paper, we are interested to study three 
differentiators: the sliding mode differentiator [23], the sliding 
mode differentiator with dynamic gains [21] and the Fliess-
Mbdoup algebraic differentiator [22]. This paper is organized 
as follows. Section 2 introduces the basic principles of the 
three differentiators. In section 3, a validation phase is carried 
out by performing and comparing various simulation tests with 
different criteria. Section 4 is dedicated to discuss and to 
synthesize the obtained results. 
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II. DIFFERENTIATION APPROACHES  

A. Sliding Modes Differentiator 

As well as for the controller synthesis, the sliding modes 
technique shows good results in the synthesis of algorithm 
differentiation [16], such as the Super Twisting algorithm 
[23]. To design a sliding modes differentiator, let the input 

signal of differentiator ( )y t  be a function defined on 

 0, measurable in Lebesgues sense. This signal is 

considered as the sum of two following terms: 

 ( ) ( )y t x t t   (1) 

 x t is an unknown base signal with the 

(1 )thn derivative having a known Lipschitz constant 0C  . 

 t is a bounded Lebesgue-measurable noise with unknown 

features, defined by  t   with   is sufficiently small. 

In [16], Levant defines an infinite number of differentiator 

schemes which makes possible to estimate the thn  derivative 

of the considered signal. So, from these schemes and for 

2n  , a 2nd order Sliding Modes Differentiator (2-SMD) can 

be defined as following: 
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with the function  .sign  is defined by:  
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here 0 1 2, ,    are positive gains depending on the Lipschitz 

constant C  of  x t . Here 0 1,v v  are the outputs of the 

differentiator. At time 0t  , the initial values    0 0 0z y  

and    1 20 0z z  were taken. Indeed, after a finite time 

convergence and in the absence of noise, we obtain 1 0z v  

the estimation of  x t , while 2 1z v  the estimation of  x t . 

The parameters  , 0,1,2i i   can be chosen by using the 

following expression (see the proof in [16]): 

1

2 1
0

i
i i C     (4) 

This expression can give an idea of these parameters' 

value-order. The gains  0 , 0,1,2i i  can be chosen in such a 

way that 
00 10 20    . However, the best way is to choose 

them by computer simulation .In practice, the drawback of this 
differentiator is the tuning up of its gains. In effect, it is not 
always easy to determine the gains' values for a given 
bandwidth of the input signal. Simple modifications of the 
spectral content of the input signal or its amplitude can cause a 
significant error in the estimation of the derivative. Moreover, 
the choice of algorithm parameters also presents other 
compromise in the presence of noise. By having relatively 
high values of the gains, the derivative estimation exhibit 
significant noise amplification. The accuracy of the 2-SMD 
form depends on these three gains that cannot be chosen too 
large so as not to differentiate the noise. The fact that this 
parameterization depends on the input signal is an effective 
limit of the method performances. In [21], a new scheme of a 
2-SMD is proposed.  

B. Sliding Modes Differentiator With Dynamic Gains 

The accuracy of the 2-SMD depends on the choice of three 
parameters. So the most suitable parameters can be defined by 
using the adaptive mechanism, in order to regulate these gains 
of such an algorithm. 

Let define the 2nd order Sliding Modes Differentiator with 
Dynamic Gains (2-SMDDG) by: 
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where: 0 0s z f  , 1 1 0s z v   and 2 2 1s z v   are the 

different sliding functions introduced in the differentiation 

algorithm already defined in the classic scheme (2-SMD). 

0 1
ˆ ˆ,   and 2̂ are the dynamic gains of the algorithm 

computed in real time. 0  and 1  are two adjustable terms 

ensuring the convergence of the new scheme of differentiator, 
such as: 

0 0 0 1 1 1;K s K s      (6) 

where 0K , 1K  are two positive gains [21]. 



The dynamic gains 0 1 2
ˆ ˆ ˆ, ,    are defined by: 
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C. Algebraic differentiator 

Different from the sliding modes differentiators, this 
algorithm is algebraic and non-asymptotic. It presents a good 
robustness with respect to the noises with any information 
and/or assumptions of their statistical properties. Consider an 

arbitrary smooth signal ( )y t  which has an only property that 

must be C
. To estimate the time-derivative of ( )y t with a 

such algorithm, the considered signal is approximated by the 
classical truncated Taylor series expansion at an order N . In 

operational calculus notation, the derivative of the 

approximated signal to an ( 1)N  order leads to this 

differential equation: 

1 1 ( )ˆ ( ) (0) (0) (0).N N N N
Ns y s s y s y y         (8) 

Then, the first step towards the estimation of the thn  

derivative of y(t) is the estimation of the coefficient y
(N)

(0) 
from (8). The second step consists of choosing the kind of 
differential operator that must be used in order to estimate the 
desired coefficient.  

Consider ( )y t defined as in (1) and let the linear 

differential operator having the following form: [22] 

, 1n k N n
N n

n k N nk

d d

sds ds

 

 
  (9) 

with N is the truncation order, n is the index of the desired 

derivative ( n N ) and k . 

This operator is chosen for its annihilator effect. One of the 
main advantages of this annihilator is that it provides an 
explicit formula for each estimate. Then, the problem due to 
the simultaneous estimation can be avoided. Then, the 
estimation is less sensitive to noise and numerical computation 
errors.  

Considering equation (9) and for i n , we have 
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1

s
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and the multiplication by 
n k
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d
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
 is used to annihilate the 

coefficients having i n . 

Finally, the scheme of the algebraic time-derivative 
estimation is given by  the following equation, [22]: 
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with T  is the estimation window and 1N     where 

0.   

The implementation of this algorithm depends on 5 

parameters' settings: , , ,N n T   and k . The higher N  is, the 

more accurate the algebraic differentiator gets but the more 
complex its computing becomes. Furthermore, noise 
elimination of estimates is due to the presence of these iterated 
integrals which are computed on an estimation window T . In 
effect, this latter plays a key role in the implementation of the 
algorithm. 

To illustrate the previous development, the two first 

derivatives are expressed. For the estimation of ( )y t , the 

parameter values are selected such as 

1, 3, 5 and 1n N k    and for the estimation of ( )y t are 

as 2, 3, 5 and 1n N k    . After computing and using 

the normalized integral to  0,1  where  0,1  , the following 

resulting equations are obtained by: 
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III. SIMULATION RESULTS 

A. Criteria Validation 

Let ( ) cos(2 ) sin( )
2

t
y t t   the considered signal. The 

simulation is performed for two different tests: non-noisy test 
and a noisy one. For each test, there are some numbers of 
criteria that are chosen. For the non noisy test, the assessed 

criterion is the error in terms of a magnitude 
maxe which 

represents the difference between the derivative estimation and 
the analytical one. To have a quantitative idea on the delay 
provided by each differentiator, a phase shift is given in degree 
and computed peak to peak. 

For the noisy test, we add a white Gaussian noise with zero 

mean and standard deviation of 0.03 to the same input signal 

( )y t  (see Fig.1). 

To quantify the reduction of noise amplification's rate of 
these three differentiators , two indicators are used: the Signal 
to Noise Ratio (SNR) and the Noise Factor (NF).  

The NF is defined in order to characterize the degradation 
rate introduced by the used algorithm, it is computed as 
follows: 

input outputNF=SNR /SNR  (16) 

The SNR is a quantity measured in decibels, which gives us 
the power signal rate according to the noise. It is computed by 
the following equation: 

10

Signalenergy
SNR=10log ( )

Noise energy
 (17) 
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Fig. 1. Noisy input signal 

So having a positive SNR means that the noise attenuation 
rate is high. For the low or negative values, the signal is very 
noisy and it is degraded. Therefore, a very high SNR value of 
the output corresponds to a small NF value. For all simulations, 

the sampling step is set at 310eT   second and for the all 

algebraic differentiator simulations, the size of the estimation 
window is set at 0.5 second 

B. Simulation Tests 

We present in this section some simulations to illustrate the 
first and the second derivatives' estimation of y(t) with three 

algorithms: the 2nd order Sliding Modes Differentiator (2-

SMD), the 2nd order Sliding Modes Differentiator with 
Dynamic Gains (2-SMDDG), and the Algebraic Differentiator 
(AD). 

Recall that the AD parameters are respectively: 

3, 1, 5, 1N n k     for the 1st estimation (see equation 

(12)) and 3, 2, 5, 1N n k     (see equation (13)) for the 

2nd estimation. 

1) Non-Noisy Case 
Without noises, note that the parameters of sliding modes  

differentiators are fixed such as: 2-SMD 

(
0 1 240, 30, 10     ) and 2-SMDDG ( 0 500K  , 

1 450K  ). 

Fig. 2 and Fig. 3 present respectively the 1st and the 

2nd derivative estimation of the considered input signal ( )y t  

given by the studied algorithms. It is clear that all first 
derivative curves are very close which explains the very low 
values of error in terms of magnitude and phase shift (see 
Table I). For the second derivative, the AD, the 2-SMD and the 
2-SMDDG continue to introduce a non noticeable lag with 
respect to the theoretical derivative. 

However, Table I shows that for the estimation of the 
second derivative, the error given by the AD is about 6 times 
more important than the 2-SMD and 2 times more important 
than the 2-SMDDG. This AD's lack of accuracy is due to the 
fact that the AD's algorithm development is restricted to a such 
order N . 

TABLE I.  ERROR AND PHASE SHIFT 

Algorithm Criteria First derivative 
Second 

derivative 

AD 
maxe  0.264 0.54 

Phase shift(°) 3.037 3.61 

2-SMD 
maxe  0.012 0.082 

Phase shift(°) 0.17 0.91 

2-SMDDG 

maxe  32*10  0.24 

Phase shift(°) 0.057 0.114 
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Fig. 2. Results - First order derivation  
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Fig. 3. Results - Second order derivation 

2) Noisy Case 
In the presence of the noise, the setting gains of sliding 

differentiator are changed as follows:  

(
0 1 28, 7, 6     ) for the 2-SMD and ( 0 7K  , 1 6K  ) 

for the 2-SMDDG. 

The curves for each estimator are given in Fig.4 and Fig.5. 
These figures show that the 2-SMD and the 2-SMDDG 
estimates are clearly much more noisy than the AD estimates 
which is illustrated by the SNR values in Table II. 

In fact, the most superior SNR values of the first derivative 
and the second derivative are those given by the AD. This 
latter has eliminated the noise amplification at the first and the 
second derivatives. The NF values of the AD given in table II 
are close to 1, which explains the robustness and the proper 
filtering brought by this algebraic version (see Table II). 
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Fig. 4. Results - First order derivation  
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Fig. 5. Results - Second order derivation  

TABLE II.  SNR AND NF VALUES 

Algorithm Criteria First derivative 
Second 

derivative 

AD 
SNR (dB) 31.2 28.6 

NF 0.89 0.92 

2-SMD 
SNR (dB) 12.9 0.8 

NF 2.84 89.6 

2-SMDDG 
SNR (dB) 16.6 8.3 

NF 1.58 4.56 

Indeed, noise amplification with the 2-SMDDG is about 2 
times lower than the SMD for the estimation of the first 
derivative, and about 20 times smaller for the estimation of the 
second derivative. This noise attenuation is provided by the 

presence of the linear term  , 0,1i iK s i  in equations for 

each output i  of the 2-SMDDG. This linear term can be seen 

as the equivalent command of sliding mode control laws 
which allows the reduction of the chattering effect. 

IV. DISCUSSION 

This study showed that for the 2-SMD, the higher the gains 

i are, the faster algorithm's convergence gets. However, in 

case of a noisy input signal, high gain values lead to the 
amplification of the noise in the output signal. Indeed, the same 
problem is posed for the 2-SMDDG since the linear 

term  , 0,1i iK s i  allows the reduction of the chattering effect 

and ensures continuous smoothing in the output noise thanks to 
low values of convergence gains. However, if the values 
chosen for these gains become too low, the convergence time 
of the algorithm becomes slow. Therefore, for the 2-SMD and 
the 2-SMDDG, the choice of convergence gains remains 
difficult and is based on a compromise between noise reduction 
and convergence time of the sliding mode differentiators. The 
major advantage provided by the 2-SMDDG is the reduction of 
the noise amplification in the output signal which is done by 
adjusting a number of parameters less than used for the 2-SMD 
and the AD.(see Table III).  
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TABLE III.  DIFFERENTIATORS' COMPARAISON 

Algorithm 
Magnitude 

accuracy 
Phase shift Robustness parameters' number 

Time of 

computation 
Ease of implementation 

AD + - +++ 5 - - 

2-SMD ++ ++ - 3 ++ + 

2-SMDDG +++ +++ + 2 + ++ 

One of the advantages of the AD is that it requires a 
unique setting parameters for both non-noisy and noisy cases. 
Thanks to its iterated integrals computed on an estimation 
window T , the AD ensures the noise elimination of estimates 
and occurs as the most robust differentiator studied in this 
paper (see Table III). Then, it is used to act as a low pass 
filter. Indeed, it is essential to notice that the filtering depends 
on the window size. Indeed, the larger the window's size is, 
the better filtering we get. However, a large window imposes a 
high truncation error. For this, it becomes necessary to make a 
compromise between the noise filtering and the truncation 
error. 

The values given in Table III show that the sliding mode 
algorithms have a computation time much lower than the 
algebraic algorithms. This is due to the fact that the AD 
algorithm includes two "for loops" and requires as much time 
as compilation according to the samples number then to the 
sample time. Besides, the 2-SMDDG requires more time of 
computation than the 2-SMD since it demands the compilation 
of three more dynamic equations. 

 V. CONCLUSION AND FUTURE WORK 

In this paper, two different approaches are recalled. The 
first is the sliding mode approach and the second is the 
algebraic one. In fact, two sliding mode differentiators were 
investigated: Sliding mode differentiator and Sliding Mode 
Differentiator with Dynamic Gain. This work proved that the 
sliding mode approach is more accurate than the algebraic one 
while this latter is more robust. 

In future work, it is possible to improve the algebraic 
algorithm in order to use it in a control law instead of a 
physical sensor or implement it in a control loop of a physical 
system. 
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