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Abstract—In this paper, a nonlinear dynamical model of a
particular class of convertible Unmanned Aerial Vehicle (UAV),
called Quad Tilt-Wing (QTW), is established and used for the
Linear Quadratic Gaussian (LQG) control design of such a
rotorcraft. With four rotors/wings and a tilting mechanism for
each pair, this Vertical Take-Off and Landing (VTOL) vehicle
can take-off and landing vertically, such as helicopters, and fly
horizontally like a fixed-wing aircraft. All aerodynamic forces and
moments of the studied QTW are described within an inertial
frame. Then, a dynamical model, relating to the vertical flight
mode of the QTW, is derived using the Newton-Euler formalism.
A LQG based control approach is investigated to stabilize the
attitude and altitude of the QTW drone. Several numerical results
are carried out in order to show the ability and effectiveness of the
proposed control approach despite the addition of aerodynamic
disturbances that represent small airstreams and winds.

Keywords—convertible UAV, Quad Tilt-Wing, modeling, verti-
cal flight dynamics, LQG control, altitude and attitude stabiliza-
tion, MIMO systems.

I. INTRODUCTION

In recent decades, the use of the UAVs (Unmanned Aerial
Vehicles) experienced a real prosperity in the fields of re-
connaissance and military surveillance as well as in various
civil applications [1]. UAV is divided in two major categories:
the rotary-wing systems which lift is provided by the rotation
of the propeller blades and the fixed-wing ones which lift is
provided by the airflow over the wings induced by the own
movement of the vehicle [2].

The rotary wing UAV is able to take off and landing
vertically and perform the hover flight, which is very useful
for many applications (inspection, surveillance, take-off from
a restricted zone, etc.). However, they cannot fly forward at
high speed carrying large payloads. Contrariwise, the fixed-
wing UAV can fly forward at high speed. But, they need
always of a landing strip because the inability to vertical
flight. For that, a new family of aerial vehicles is recently
appeared and called convertible aircrafts to be currently used
at the forefront of aerial robotic researches [3]. This kind of
UAV has a hybrid structure which combines the advantages
of rotary-wing and fixed-wing aircrafts allowed to experience
the best effects of aerodynamic lift and minimize the energy
consumed in forward flight. These vehicles can toggle between
the vertical and horizontal flights. The transition between the
two phases of flight can be achieved by tilting the full vehicle

body when the latter takes off and lands on its tail, then tilts
horizontally for forward flight (tail-sitter or tilt-body) or by
tilting only its rotors using a dedicated mechanism (tilt-rotor
or tilt-wing).

The most famous model of convertible tilt-rotor is the
Bell Eagle Eye [4] which is based on two rotors with a tilt
mechanism and a single wing. There exist some aerial vehicles
with a two tilt-rotor technology similar as the Boeing-V22
Osprey [5] and the BIROTAN [6]. In [7] and [8], the authors
developed a new design of tilt-rotor vehicle called Quad-
plan which can take off and landing vertically. However, the
disadvantage of using two rotors is that it is impossible to
fly when one of these rotors fails. Therefore, it is desirable
to use four rotors. In addition, the tilting of the wings gives
more efficiency of the slipstream effect. A new convertible
UAV design that is capable of solving the above mentioned
problems is developed. This vehicle, called Quad Tilt-Wing
(QWT), has four rotors and wings with a tilt mechanism for
each pair. Several experimental platforms were carried with
this body structure [9], [11].

Among many control approaches developed in the literature
for stabilizing the attitude and altitude dynamics of the QTW,
some ones are around the Linear Quadratic (LQ) and sliding
mode with recursive nature controllers [12], adaptive hierar-
chical control [13], hybrid model predictive control [14] and
dynamics inversion method [15]. In this paper, a LQG based
control approach is proposed to stabilize both the altitude and
the attitude of the studied QTW drone. This control strategy
combines a LQ controller and a Kalman estimator to improve
the reconstruction of the non-observed plant states and the
disturbances rejection.

The remainder of this paper is organized as follows. In Sec-
tion II, the principle and the different modes of flight for the
QTW UAV are presented and a dynamical model is derived for
the vertical flight dynamics using the Newton-Euler formalism.
Section III presents the designed LQG control approach for the
altitude and attitude stabilization of the QTW VTOL aircraft.
All numerical simulation results, obtained with the proposed
stabilization approach, are shown and discussed in Section IV.
Conclusion and future works are finally presented in Section
V.
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II. MODELING OF THE QTW UAV

In this section, we describe the mathematical model of the
studied QTW in the vertical flight dynamics. The different
operation modes and the related aerodynamic forces and
torques are firstly presented.

A. Description of the flight modes

As shown in Fig. 1, the convertible aircraft has two funda-
mental motion modes: the vertical and the horizontal flights.
A transition operation mode, that interposes these two flights,
is also noted. The switching from one mode to another is
affected using the well known tilting mechanism. During
vertical takeoff and landing, the QWT is based only on its
rotors and behaves like a Quadrotor with H-type structure.
The tilt angles of the wings are nearly equal to 90◦ with the
horizontal plane. At the horizontal flight mode, the aircraft
behaves like a conventional plane with a tilt angle of wings
almost equal to zero degree.

Fig. 1. The Quad Tilt-Wing’s operation flight modes.

B. Dynamical model in the vertical flight

The modeling of flying robots is a delicate task since
the dynamics of the system is strongly nonlinear and fully
coupled. In this section, the Newton-Euler formalism is used to
develop a nonlinear mathematical model of the studied QTW.
To simplify this study, different assumptions will be made for
the development of a dynamical model to be used for the
observation and the control stages. So, we suppose that [16]:

• the QTW aerial vehicle is a 6 Degree-Of-Freedom (DOF)
rigid body;

• the flexibility of the aircraft wings and fuselage are
neglected;

• the aerodynamic center and center of gravity are coinci-
dent;

• the aircraft weight is considered constant.

To establish such a model, we use an earth fixed inertial
reference frame, denoted as Ri = {Oi, xi, yi, zi}, and the
body fixed reference frame, given by Rb = {Oi, xb, yb, zb},
as shown in Fig. 2.

Fig. 2. Coordinate systems external forces acting on the QTW aircraft.

The orientation of the body frame Rb with respect to the
inertial one Ri is expressed by the following transformation
matrix:

Rib =

 cψcθ sϕsθcψ − sψcϕ cϕsθcψ + sψ sinϕ
sψcθ sϕsθsψ + cψcθ cϕsθsψ − sϕcψ
−sθ sϕcθ cϕcθ


(1)

where, s(.) = sin(.) and c(.) = cos(.), ϕ, θ and ψ are the
roll, pitch and yaw Euler angles, respectively. These angles
represent the rotation motions of the QTW body around the
axis xb, yb and zb, respectively.

The position and linear velocity of the QTW gravity center
G are given in the inertial frame as follows:

Pi =
(
x y z

)T
(2)

Vi = Ṗi =
(
ẋ ẏ ż

)T
(3)

The attitude and the angular velocities in the inertial frame
are respectively described as:

αi =
(
ϕ θ ψ

)T
(4)

Ωi = α̇i =
(
ϕ̇ θ̇ ψ̇

)T
(5)

The relations for the transformation between the linear and
angular velocities, presented in the inertial and body frames,
are given respectively by Eq. (6) and Eq. (7):

Vb =

 vx
vy
vz

 = RTib(ϕ, θ, ψ)× Vi = Rbi(ϕ, θ, ψ)× Vi (6)

Ωb =

 p
q
r

 = E(θ, ϕ)× Ωi = E(θ, ϕ)×

 ϕ̇

θ̇

ψ̇

 (7)



where:

E(θ, ϕ) =

 1 0 −sθ
0 cϕ sϕcθ
0 −sϕ cϕcθ

 (8)

During the hover flight, the QTW UAV behaves like a
Quadrotor, i.e., it is based only on its rotors. In this case,
the basic movements of the QWT are achieved by varying the
speed of each rotor there by changing the thrust produced.
The rotations of propellers create torques in the clockwise
direction (T1, T4) and counter-clockwise direction (T2, T3)
for propellers (1, 4) and (2, 3), respectively. In this way, the
altitude stabilization is preserved if the rotations of rotors are
equals. The QWT inclines toward the direction of the slower
rotor, which takes into account a translational movement along
this rotor axis. For example, the vehicle will move along y
axis if the roll angle is changed either by increasing the speeds
rotations of the rotors 1 and 2 or increasing the speeds rotations
of the rotors 3 and 4.

The translational and rotational dynamics of the QTW are
expressed in the vehicle body frame . Using the Newton-Euler
formalism, the dynamical plant model can be described by
Eq. (9) and Eq. (10)

mV̇i = Ft (9)

IbΩ̇b = −Mt +Ωb ∧ (Ib × Ωb) (10)

where m denotes the mass of the QTW, Ft and Mt represent
the sum of external forces and moments acting on the vehicle
center of gravity, respectively, Ib = diag (Ixx, Iyy, Izz) de-
notes the inertia matrix of the QTW, Ixx, Iyy and Izz are the
inertias in the body reference frame.

The total external force Ft acting on the convertible QTW
center of gravity consists of the total thrust forces F of the
four rotors, the gravity force Fg and the external disturbances
Fd like the wind gusts. Since these forces are expressed in the
body frame, they must be transformed by the rotation matrix
Rib in the inertial one to obtain the following expression:

Ft = Rib(F + Fg + Fd) (11)

where:

F =

[
0, 0,−

4∑
i=1

Fi

]T
and Fg = mg

 −sθ
sϕcθ
cϕcθ


Note that Fi = kω2

i where k > 0 is the lift coefficient, ωi
the angular speed of the ith motor (i= 1, 2, 3 and 4) and g is
the acceleration due to gravity.

The total external torque Mt acting on the convertible QTW
center of gravity consists of the torques M induced by the
rotors thrust forces, the gyroscopic effects torques Mh

gyro and
M b
gyro due to the rotation of the propellers and the movement

of the aircraft, respectively, and the torque Md due to the
external disturbances. It is given by:

Mt =M +Mh
gyro +M b

gyro +Md (12)

All these defined torques are expressed respectively as
follows:

M =

 Mϕ

Mθ

Mψ

 =

 ls [(F1 + F3)− (F2 + F4)]
ll [(F1 + F2)− (F3 + F4)]
λ (F1 − F2 − F3 + F3)

 (13)

Mh
gyro =

4∑
i=1

Jr

ηiΩb ∧
 0

0
−1

ωi
 (14)

M b
gyro = Ωb ∧ IbΩb (15)

where ll and ls denote the distances between the rotors and the
vehicle’s center of gravity in x and y directions, respectively,
η(1,2,3,4) = (1,−1,−1, 1) and Jr denotes the z-axis inertia of
the rotors propellers.

The torque Ti = λiFi created by the rotors is proportional to
the thrust forces with a torque/force constant that depends on
the geometry of the propellers. For the clockwise propellers,
we have λ2,3 = λ, while for the counter-clockwise ones, we
obtain λ1,4 = −λ.

Substituting in Eq. (9) each term by its expression, previ-
ously established, we obtain the following differential equa-
tions which define the translation dynamics of the QTW:

ẍ =
1

m
(−cϕsθcψ − sϕsψ)u1

ÿ =
1

m
(−cϕsθsψ + sϕcψ)u1

z̈ =
−cϕcθ
m

u1 + g

(16)

Substituting in Eq. (10) each term by its expression, previ-
ously established, we obtain the following differential equa-
tions which define the rotational dynamics of the QTW:

ṗ =
u2
Ixx

+
Iyy − Izz
Ixx

qr − Jr
Ixx

qωp

q̇ =
u3
Iyy

+
Izz − Ixx
Iyy

pr +
Jr
Iyy

pωp

ṙ =
u4
Izz

+
Ixx − Iyy

Izz
pq

(17)

where ωp = ω1 − ω2 − ω3 + ω4 is the overall residual rotor
angular velocity.

Finally, the control inputs of the QTW aircraft are defined
as follows:

U =


u1
u2
u3
u4

 =


k k k k
kls −kls kls −kls
kll kll −kll −kll
kλ −kλ −kλ kλ



ω2
1

ω2
2

ω2
3

ω2
4


(18)

From Eq. (18), it can be observed that the input u1 is related
to the altitude and the inputs u2, u3 and u4 are related to the
attitude of the QTW.



III. LQG CONTROLLER DESIGN

A. LQG control formulation

As mentioned by M. Green and D. Limebeer in [17], unlike
the Linear Quadratic (LQ) control, the LQG control approach
has the advantage to be applied to systems whose state is
not measured or the measurements are affected by noises.
Developed at the beginning at the second half of the 20th

century, the LQG technique witnessed a great success and
evolution where it was applied in many aerospace systems like
the Apollo space program for the stabilization of launchers.

In the LQG control, it is considered that the plant dynamics
is linear and the measurement noise and disturbance signals are
stochastic. Hence, we have a plant model with the following
form: {

ẋ = Ax+ Bu+ w

y = Cx+ Du+ v
(19)

where w and v are the disturbance process and measurement
noise inputs, respectively. They are usually assumed to be
Gaussian stochastic processes with constant covariance ma-
trices V and W given as follows:

E
{
vvT

}
= V , E

{
wwT

}
= W

The LQG control problem is to find the optimal control law
which minimizes the following criterion:

J = lim
tf→∞

E

 1

tf

tf∫
0

(xTQx+ uTRu)dt

 (20)

where Q and R are two weighting matrices with Q = QT > 0
and R = RT > 0 and E {.} is the expectation operator.

The solution of this problem is based on the Separation
Theorem [18], as illustrated in Fig. 3. This theorem states
that the solution of this optimal control problem for stochastic
process consists of the two following steps:

• Determining an optimal estimate x̂ of the state x by min-
imizing the variance of the error E

{
(x− x̂)

T
(x− x̂)

}
using a Kalman filter based method. This estimated
optimal state is generated by the following equation :

˙̂x = Ax̂+Bu+L(y −Cx̂−Du) (21)

where L = PfC
TV −1 denotes the gain of the Kalman

estimator. The matrix Pf = P T
f > 0 is the unique

positive-semidefinite solution of the following Riccati
algebraic equation:

PfA
T +APf − PfC

TV −1CPf +W = 0 (22)

• Design an optimal state feedback controller applying to
x̂ as an exact measure of the state vector. Such a control
law is given by:

u(t) = −Kx̂(t) (23)

where K is the calculated optimal gain based on the LQ
control problem [19].

Fig. 3. Separation Theorem Principle.

From the plant model given by Eq. (19), the optimal estimated
state and the optimal feedback control law expressions are
summarized in Eq. (24), respectively:{

˙̂x = (A−LC −BK)x̂+Ly

u = −Kx̂
(24)

B. LQG Hovering Control of the QTW

To design a position controller for the guidance/control of
the QTW in hovering, Eq. (16) and Eq. (17) are putted into
a nonlinear 12th order model with states corresponding to
the position Pi, the attitude angles αi, the linear and angular
velocities Vi and Ωb, respectively. The system is equivalent to
a nonlinear dynamical model of the form:

Ẋ = f(X,U) (25)

where X =
(
ϕ, ϕ̇, θ, θ̇, ψ, ψ̇, z, ż, x, ẋ, y, ẏ

)T
is the state

vector, and U = (u1, u2, u3, u4)
T denotes the control input.

In this study, the QTW model is linearized around an
equilibrium operating point, e.g. in hover flight condition with
constant altitude. The LQG control structure, retained for the
convertible QWT, is given in Fig. 4. The linear model is
characterized by the matrices A and B, which are computed
as follows:

A =


∂f1(X,u)
∂X1|x=x∗ . . . ∂f1(X,u)

∂X12|x=x∗

...
. . .

...
∂f12(X,u)
∂X1|x=x∗ · · · ∂f12(X,u)

∂X12|x=x∗

 (26)

B =


∂f1(X,u)
∂u1|u=u∗ . . . ∂f1(X,u)

∂u4|u=u∗

...
. . .

...
∂f12(X,u)
∂u1|u=u∗ · · · ∂f12(X,u)

∂u4|u=u∗

 (27)

Through a trial-error process, we choose the weighting
matrices Q and R of the LQ controller as follows:

Q = 10−1I12 (28)

R =


10−2 0 0 0
0 10 0 0
0 0 10 0
0 0 0 10

 (29)

where I12 is the 12× 12 identity matrix.



Fig. 4. Proposed LQG structure for the QTW position control.

After that the noise covariance matrices are determined, we
solved this formulated problem in MATLAB environment to
find the state feedback gain matrix and the optimal Kalman
estimator gains K and L, given by:

K =

[
0 0 0 0 0 0 −3.16 −5.94 0 0 0 0

1.72 0.88 0 0 0 0 0 0 0 0 −0.31 −0.73
0 0 1.54 0.71 0 0 0 0 0.31 0.70 0 0
0 0 0 0 0.31 0.43 0 0 0 0 0 0

]
(30)

L =



0.41 0.95 0 0 0 0 0 0 0 0 −0.058 −0.91
0.95 16.18 0 0 0 0 0 0 0 0 0.001 −0.427
0 0 0.41 0.97 0 0 0 0 0.058 0.91 0 0
0 0 0.97 23.40 0 0 0 0 −0.00110.32 0 0
0 0 23.40 0 0.99 0.96 0 0 0 0 0 0
0 0 0 0 0.9623.40 0 0 0 0 0 0
0 0 0 0 0 0 0.830.44 0 0 0 0
0 0 0 0 0 0 0.440.65 0 0 0 0
0 0 −0.0011−0.0011 0 0 0 0 0.99 0.91 0 0
0 0 0.32 0.32 0 0 0 0 0.91 4.05 0 0

0.059 0 0 0 0 0 0 0 0 0 0.99 0.91
0.91 −0.43 0 0 0 0 0 0 0 0 0.90 4.04


(31)

IV. SIMULATION RESULTS AND DISCUSSION

In order to observe the performances of the proposed control
structure, we simulate the model of the studied QTW UAV
using the MATLAB/Simulink environment. From the initial
position and attitude αi(0) = Pi(0) = 0 and while retaining
the reference position and yaw angle, the simulation results
of the LQG control implementation in vertical flight mode
are illustrated in Fig. 5 to Fig. 8. The disturbance process
and measurement noise inputs are modeled with Gaussian
random variables of zero mean and variance equal to 0.01.

The variation of the estimated and real system states for
the position and attitude control are depicted in Fig. 5 and
Fig. 6. As shown in Fig. 7 and Fig. 8, the estimated and
real system states are close and similar for the linear and
angular velocities. We can observe that the estimation errors
for the position, attitude and velocities are negligible, hence
the good reconstitution of the system state. So, the proposed
LQG control approach gives high performances in the studied
QTW position and attitude stabilization.

V. CONCLUSION

In this paper, a nonlinear model for the vertical flight
dynamics of the convertible QTW has been developed. The
LQG approach is presented to solve the position QTW sta-
bilization using a linearized model of the vehicle around an
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Fig. 5. LQG control based position response of the QTW UAV.
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estimated ẏ

Fig. 7. LQG control based linear velocities response of the QTW UAV.

equilibrium operating point in the hovering condition. The
developed LQG controller ensures the position stabilization
of the QWT drone with a satisfied tracking performance.
The presented simulation results show the effectiveness of the
proposed stabilization approach. As future works, we intend
to focus on the control in horizontal flight and transition



Time (s)
0 5 10 15 20 25 30 35 40 45 50

V
el
o
ci
ty

φ̇
(r
a
d
/s
)

-5

0

5 real φ̇

estimated φ̇

Time (s)
0 5 10 15 20 25 30 35 40 45 50V

el
o
ci
ty

θ̇
(r
a
d
/s
)

-5

0

5
real θ̇

estimated θ̇

Time (s)
0 5 10 15 20 25 30 35 40 45 50V

el
o
ci
ty

ψ̇
(r
a
d
/s
)

-2

0

2 real ψ̇

estimated ψ̇

Fig. 8. LQG control based angular velocities response of the QTW UAV.

modes. Furthermore, an advanced Computer Aided Design
(CAD) methodology for the Hardware-In-the-Loop (HIL) co-
simulation and rapid prototyping is under development to
improve the proposed LQG controller effectiveness.
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