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Abstract—This paper proposes a new scheme to track the fre-
quency selective time variant channel induced by multipath fading
wireless Multiple-Input Multiple-Output Orthogonal Frequency
Division Multiplexing (MIMO-OFDM) system under high mobility
conditions in the presence of Gaussian and non-Gaussian impulsive
noise interfering with reference signals. The estimation of the
channel is performed by using a nonlinear channel estimator
based on a complex Multiple Support Vector Machine Regression
(M-SVR) which is developed and applied to MIMO Long Term
Evolution (LTE) Downlink with Vertical-Bell Labs Advanced
Space Time (V-BLAST) detection algorithm. The obtained results
confirm the effectiveness of the proposed technique to track the
fading channel under high mobility conditions (350 Km/h) in the
presence of different nonlinearities.

Index Terms—Complex M-SVR, MIMO-OFDM, V-BLAST, im-
pulsive noise, LTE.

I. INTRODUCTION

Multiple-Input Multiple-Output (MIMO) systems have at-
tracted the interest of many researchers because of which have
been proposed for increasing reliability of the wireless systems
as well as communication capacity. The exploitation of the
spatial dimension by using the space division multiplexing
(SDM) technique is a promising solution for significant increase
of bandwidth efficiency and performance under fading chan-
nels. Fundamentally, the SDM method transmits different data
streams on different transmit antennas simultaneously, which
increase the signal to noise ratio and capacity. By using multiple
antennas at the receiver side, the different mixed data streams
can be recovered by SDM approaches like Vertical-Bell Labs
Advanced Space Time (V-BLAST) algorithm detailed in [1].

Orthogonal Frequency Division Multiplexing (OFDM) tech-
nology avoids channel multipath effect by converting the wide-
band frequency selective channel into a set of narrow band
flat subcarrier. The modulated symbol rate on each subcarrier
is lower in comparison to the channel delay spread, thus the
intersymbol interference (ISI) can be prevented. Therefore, the
combination of MIMO and OFDM approaches (MIMO-OFDM)
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is an attractive technique for the wireless cellular systems
especially over a fading channel.

In MIMO-OFDM systems, channel estimation task is very
important to the coherent detection especially in the presence
of non-Gaussian impulsive noise. In fact, impulsive noise can
be present in a practical environment, so the channel becomes
nonlinear. In this context, impulsive noise can significantly
influence the performance of the MIMO-OFDM system since
the time of the arrival of an impulse is unpredictable and shapes
of the impulses are not known and they vary considerably.
Additionally, impulses usually have very high energy which
can be much greater than the energy of the useful signal.

There are many channel estimation techniques proposed for
MIMO-OFDM systems. The channel estimation technique used
in this paper is based on the M-SVR (Multiple Support Vector
Machine Regression) which training sequences are placed in
each OFDM symbol to obtain the transmission environment
parameters in the presence of impulsive noise under high mo-
bility conditions. Indeed, the principle of the proposed nonlinear
complex M-SVR algorithm is to exploit the information pro-
vided by the pilot signals to estimate all subchannel frequency
responses. Thus, the proposed algorithm is developed in terms
of the RBF (Radial Basis Function) kernel and applied to LTE
downlink system.

This paper is organized as follows. Section II introduces
the MIMO-OFDM system. In section III, the M-SVR channel
estimator is provided. In section IV, we make some simulation
results. Finally, section V concludes the paper.

II. MIMO-OFDM SYSTEM

In a MIMO-OFDM system, the output signal at each receive
antenna Rx is a mixed signal consisting of the data streams
coming from each transmit antenna Tx. Assuming that the
cyclic prefix is longer than the channel response length, the
receive signal at the j** Rx antenna can be presented in the
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frequency domain as follows:
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where H;;[l, k] represents the channel frequency response cor-
responding to the [ OFDM symbol and the k' subcarrier
transmitted between the i** Tx antenna and the j** Rx antenna.
Let N, N; and N,. denote the number of subcarriers, the number
of Tx antennas and the number of Rx antennas, respectively.
X;[l,k] denotes the data transmitted from the i** Tx antenna
at the {"" OFDM symbol on the k' subcarrier. W;[l, k] is
the additive white Gaussian noise (AWGN) at the j*" receiver
antenna, with zero mean and variance ai, and is assumed to
be uncorrelated for different j's, k’s or Is.
I;[l, k] is the impulsive noise in the frequency domain which is
modeled as a Bernoulli-Gaussian process and it was generated
in time domain with the Bernoulli-Gaussian process function
i(n) = w(n)\(n) where p(n) is a random process with
Gaussian distribution and power 0%, and \(n) is a random
process with probability [2]
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Equation (1) can be expressed as
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where e;[l, k] is the residual noise which represents the sum of
the AWGN noise W;[l, k] and impulsive noise I;[l, k] in the
frequency domain.

We consider the following channel impulse response of the
mobile wireless frequency-selective multipath fading channel:

Zh

where h,(t) denotes the impulse response representing the
complex gain of the ¢*" path, T4 Tepresents the random delay of
the ¢*" path and L is the number of multipaths in the channel.
Since the mobile wireless channel is frequency selective
time variant, it is necessary to track the channel response
continuously. Therefore, the learning and estimation phases for
the MIMO-OFDM system under consideration are repeated for
each OFDM symbol in order to track the channel variations.
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III. NONLINEAR COMPLEX M-SVR ESTIMATOR

We note first that the indices ¢ and j throughout this section
denotes the i*" and j*" antenna at the transmitter and receiver
side respectively of the considered MIMO system.

Let the OFDM frame contains N! OFDM symbols which every

symbol includes N subcarriers. The transmitting pilot symbols
are X! = diag(X;(I,mAP)),m = 0,1,--- Np—1, where [ and
m are labels in time domain and frequency domain respectively,
and AP is the pilot interval in frequency domain.

The proposed channel estimation approach is based on
nonlinear complex M-SVR algorithm which has two separate
phases: learning phase and estimation phase. In learning phase,
we estimate first the subchannels pilot symbols according to LS
criterion to strike min {(YP X[ Fh ;) (V] —XZPFhZ—,j)H}
[3], as
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where Y;© = Y;(I,mAP) and ﬁﬁ = ﬁm(l,mAP) are the
received pilot symbols and the estimated frequency responses
for the I*» OFDM symbol at pilot positions mA P, respectively.
Then, in the estimation phase and by the interpolation
mechanism, frequency responses of data subchannels can be
determined. Therefore, frequency responses of all the OFDM

subcarriers are
H;j(lk) =

fog (H (1L, mAP)), (6)

where £ = 0,---,N — 1, and f;;(-) is the interpolating

function, which is determined by the nonlinear complex
M-SVR approach.

We used the following regression function:
”(mAP)—w”gou(mAP)—Fb”—&—e”, @)

for m =0,---,Np — 1 and w; ; is the weight vector, b; ; is
the bias term and residuals {e;”j} account for the effect of both
approximation errors and noise.

To improve the performance of the estimation algorithm, a
robust cost function is introduced which is e-Huber robust cost
function given by [4]
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where ec = € + vC, ¢ is the insensitive parameter which is a
positive scalar that represents the insensitivity to a low noise
level, whereas parameters v and C' control essentially the trade-
off between regularization and losses.

Let £5(e”;) = LE(R(e]y)) + L5(S(efy)) since {em} are

€ij
complex, where R(-) and \s() represent real and imaginary

parts, respectively.



Now, we can state the primal problem as
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form =0,---, Np—1, where {; and ;" are slack variables

which stand for positive, and negatlve errors in the real part,
respectively. ¢;”s and (" are the errors for the imaginary
parts. I1, Io, I3 and I, are the set of samples for which:

I, : real part of the residuals are in the quadratic zone;

I5 : real part of the residuals are in the linear zone;

I3 : imaginary part of the residuals are in the quadratic zone;

I, : imaginary part of the residuals are in the linear zone.

To transform the minimization of the primal functional (9)
subject to constraints in (10), into the optimization of the
dual functional, we must first introduce the constraints into the
primal functional to obtain the primal-dual functional. Then, by
making zero the primal-dual functional gradient with respect to
w; j, we obtain an optimal solution for the weights
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with.a'R,mmj, a}‘hm’j,.a“,.m,j, a?mm are the. Lagrange
multipliers for real and imaginary parts of the residuals and
P, = (mAP),m= -, Np — 1 are the pilot positions.
Let the Gram matrix defined by

Gi,j (u, ’U)

where K; ;(P,, P,) is a Mercer’s kernel which represents the
Radial Basis Function (RBF) kernel matrix [5] which allows
obviating the explicit knowledge of the nonlinear mapping ¢ (-).
A compact form of the functional problem can be stated in
matrix format by placing optimal solution w; ; into the primal
dual functional and grouping terms. Therefore, the dual problem
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where v, ; = [, ,wNP 7.1 and 1 are the identity
matrix and the all-ones column vector, respectively; o Rij is
the vector which contains the corresponding dual variables, with
the other subsets being similarly represented. The weight vector
can be obtained by optimizing (13) with respect to ag m i ;.
QRom.ij» CLmijs OF 4 ;5 and then substituting into (11).
Therefore, and after learning phase, frequency responses at all
subcarriers in each OFDM symbol can be obtained by SVM
interpolation

Np—1
Hij(k)= Y Ko (P, k) +big, (15)
m=0

for k =1,---, N. Note that, the obtained subset of dual multi-
pliers which are nonzero will provide with a sparse solution. As
usual in the SVM framework, the free parameter of the kernel
and the free parameters of the cost function have to be fixed
by some a priori knowledge of the problem, or by using some
validation set of observations [2].

IV. SIMULATION RESULTS

The specification parameters of an extended vehicular A
model (EVA) for downlink LTE system with the excess tap
delay and the relative power for each path of the channel
are presented in table 1. These parameters are defined by
3GPP standard [6]. In order to demonstrate the effectiveness

TABLE I
EXTENDED VEHICULAR A MODEL (EVA) [6].

Excess tap delay [ns] | Relative power [dB]
0 0.0

30 -1.5

150 -1.4

310 -3.6

370 -0.6

710 9.1

1090 -7.0

1730 -12.0

2510 -16.9

of our proposed technique and evaluate the performance in the
presence of impulsive noise under high mobility conditions, we
used a varied range of signal-to-impulse ratio (SIR) which it
ranged from -20 to 20 dB. The SIR is given by [2]

SIRgz = 10 logio(E|IDFT (R,[l,k]) — IDFT(W;[i, k])
IDFT(L; [l K])I*/oha)- (16)



We consider a scenario for MIMO-OFDM downlink LTE
system with V-BLAST detection algorithm for a mobile speed
equal to 350 Km/h. The simulated system parameters are
according to 3GPP specifications presented in [7], [8] and [9].
Two Tx and four Rx antennas are used for the MIMO-OFDM
system. The channel length L is assumed to be 9. There are
a total of 512 subcarriers so that the FFT/IFFT size is 512.
The OFDM symbol period is 72 ps. The channel bandwidth
consists of B = 5M H z and the spacing between subcarriers is
15 KHz. Modulation in subcarriers is 16-QAM and the carrier
frequency is 2.15 GHz.

The nonlinear complex M-SVR estimate a number of OFDM
symbols in the range of 1400 symbols per receive antenna,
corresponding to ten radio frame LTE. Note that, the LTE radio
frame duration is 10 ms [7], which is divided into 10 subframes.
Each subframe is further divided into two slots, each of 0.5
ms duration. We Notice that, in the LTE system, when two or
more transmitter antennas are applied, the pilot symbols are
transmitted orthogonally in space. Indeed, these orthogonality
in space is obtained by letting all other antennas be silent in
the resource element in which one antenna transmits a pilot
symbol.

For comparison purposes, Least squares (LS), Minimum
Mean Squares Error (MMSE) and Decision Feedback channel
estimates are simultaneously obtained in the frequency domain
in all cases. Fig. 1 represents the Bit Error Rate (BER) improve-
ments that can be attained with nonlinear complex M-SVR and
other conventional algorithms. All techniques are simulated in
the presence of non-Gaussian impulsive noise with p = .1.
This figure confirms that nonlinear complex M-SVR algorithm
outperforms other algorithms especially for low SIR values
where nonlinearities increase. The complex M-SVR algorithm
parameter values are set as: C' ranging from 10 to 1000, v from
102 and 1075, and e whithin a range from .001 and 0.1.

Accordingly, we take into account in Fig. 2 the impulsive
noise with different values (p = .05 and p = .1) for different
receive antennas (N, = 2, N,. = 3 and N, = 4) with N; = 2.
It is clear that the behavior of the nonlinear complex M-SVR
performs better for low nonlinearity (low value of p) and for
high number of receive antennas.

Regarding the complexity of the used estimators, LS is the
least complex estimator because it contains only one matrix
inversion operation. However, the Decision Feedback estimator
contains two operations of matrix inversion and two operations
of matrix multiplication, while the MMSE estimator suffers
from high complexity since a matrix inversion is needed each
time the data change. On the other hand, the M-SVR estimator
uses quadratic programming (quadprog function in Optimiza-
tion MATLAB Toolbox) with the functions Buffer and kron for
fast computation of kernel matrix using the Kronecker product,
and thus the algorithm becomes faster.

V. CONCLUSION

This paper describes a new semi-blind MIMO-OFDM chan-
nel estimation algorithm based on the M-SVR method to
compensate and estimate channel effects for a MIMO-OFDM
wireless communication system. Indeed, this paper adopts a
nonlinear complex M-SVR based channel estimator for LTE
downlink system with V-BLAST detection algorithm in the
presence of impulsive noise interfering with OFDM pilot sym-
bols under high mobility conditions (350 Km/h). Our formu-
lation is based on nonlinear complex M-SVR specifically de-
veloped for comb type pilot arrangement-based MIMO-OFDM
system. The proposed method is based on learning process
that uses training sequence to estimate the channel variations.
Therefore, pilot symbols are inserted into different subcarriers
at different antennas in order to increase the convergence
rate and the estimation accuracy. Through experimentation,
results have confirmed the capabilities of the proposed nonlinear
complex MIMO-OFDM M-SVR estimator in the presence of
Gaussian and non-Gaussian impulsive noise interfering with the
pilot symbols for a high mobile speed when compared to some
conventional techniques.
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Fig. 1. BER performance as a function of SIR for (2 x 4) MIMO-VBLAST
system for a mobile speed at 350K m/h with p = .1.
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