
Extending the use of RuleML to store metadata and

database semantics

Atia M. Albhbah

Faculty of Information Technology

Alasmarya University

Zliten, Libya
E-mail: a.albabah@yahoo.com

Mohamed A. Mgheder

Faculty of Information Technology

University of Tripoli

Tripoli, Libya
E-mail: m.mgheder@uot.edu.ly

Mick Ridley

School of Electrical Engineering and Computer science

University of Bradford

Bradford, UK

E-mail: M.J.Ridley@Bradford.ac.uk

Abstract— Shifting legacy data held in stand-alone systems to be

used in Web application systems can be expensive and time

consuming. RuleML can be used to represent RDBMS data by

storing database metadata in an external format for some design

tools. Just as XML Schema, which uses elements and attributes

to express the semantics of XML data, but XML Schema does

not have active elements in principle; RuleML is used as a

representation for RDBMS metadata too. This paper proposes

the use of RuleML format to implement more semantics for Web

forms and demonstrate how this RuleML based approach can

provide support for greater semantics using the example of

advanced domain support even when this is not a feature

supported by a specific RDBMS.

Keywords— Rulebase, RuleML, XML, Metadata.

I. INTRODUCTION

Domains are useful for abstracting common fields between

tables into a single location for maintenance. For example, an

email address column may be used in several tables, all with

the same properties. This allows us to define a domain and use

that rather than setting up each table’s constraints individually.

The benefits of domains are many [1] for example:

 A constraint placed on a domain ensures that all

columns and variables intended to hold values in a

range or format can hold only the intended values. For

example, a data type can ensure that all credit card

numbers typed into the database contain the correct

number of digits.

 To make the applications and the database structure

easy to understand.

Database logic is found in multiple places in RDBMSs, for

example type information in create table statements and create

domain statements; therefore it will be helpful if we can get

all rules/logic in one format and place. In addition if we can

provide a more independent format that can help transfers

from one RDBMS to another of both metadata and data itself.

Not all RDBMSs fully support advanced SQL features such

as create domain. Even if they do they may or may not

support further features such as constraints within create

domain or composite type. We illustrate this with a typical

create table statement from a system that doesn’t support

domains as in Figure 1 below:

Figure 1 Person table creation without composite type

PostgreSQL now supports the creation of more structure in

create table statements as illustrated below:

 Create structured type as example in Figure 2 below

of creating address table as type of composite

attributes [2]. We create an address-structured type

via the route of creating a table. In most advanced

RDBMSs table creation is equivalent to type creation

[3]:

create table person (

 id serial,

 name char (25),

 building_no char (5),

 street char (20),

 town char (20),

 postcode char (25));

PC
Typewriter
ISSN: 2356-5608

PC
Typewriter
Proceedings of Engineering & Technology (PET)

PC
Typewriter
pp. 185-191

PC
Typewriter
Copyright IPCO-2016

User1
Typewritten Text
3rd International Conference on Automation, Control, Engineering and Computer Science (ACECS'16)

User1
Typewritten Text

Figure 1 Address table (and type) information

 Create a table that uses the address table as in the

example below in figure 3. This shows how the

address table can be used in another table as a type

for the address column [2]:

Figure 2 Person table creation using composite type

 Figure 1 and Figure 3 representations may be seen as

equivalent in that they both store the same data but arguably

the form using the address type has greater semantics and

would be preferable if this feature is supported.

 Our aim is to provide rich representations in RuleML for

the table information that can be used to create the richest

table structure in any RDBMS, which also support the

development of semantically richer forms.

II. PREVIOUS RELATED WORK

We discuss a number of approaches using metadata which

have some limitations in terms of separation of logic and

application.

A. Developing Web Entry Forms Based on

Metadata

 Elbibas et al. in [4] proposed an approach to develop and

maintain HTML forms based on metadata extracted from a

database table. The authors have used Java Database

Connectivity (JDBC) [5] for accessing different databases. It

included metadata features. Their proposed approach

generates dynamic HTML forms, which have been generated

and validated automatically. As the HTML is generated

automatically on the fly, i.e., dynamic HTML, changes that

are made to the database are reflected once the data is

accessed again. Java and metadata were used to show help

messages to the user to validate the input data. The set of rules

of this scheme is embedded in the application code where it is

difficult to locate and change their logic. In addition the set of

rules does not support the manipulation of semantics of

database metadata in some cases. So it is possible to develop

domain specific rules to support the generic rules, as an

example to deal with column names.

B. Using Database Metadata and its Semantics to

Generate Automatic and Dynamic Web Entry

Forms.

 Elsheh et al. in [6] proposed a model which aims to

generate dynamic Web entry forms based on metadata

extracted from system tables. They used the Java servlet class

to convert the extracted metadata via JDBC into an XML

document. A set of rules has been developed and applied to

database metadata which is used to map each column to

specific user interface controls. In addition, the XML

document is transformed into an XHTML document, using

XSLT stylesheet, which is returned back to the user as Web

entry form. Although XML used it differs from our approach

which is using RuleML. This approach has the same problems

encountered by [4] where the set of rules of this scheme is

embedded in the application code where it is difficult to locate

and change their logic. In addition the set of rules does not

support the manipulation of semantics of database metadata in

some cases. So it is possible to develop domain specific rules

to support the generic rules, as example to deal with columns

name.

C. Automatic Generation of Web User Interfaces in

PHP using Database Metadata

 Mgheder et al. in [7] suggested an approach that uses

metadata stored in system tables in databases (columns name,

type, size etc.) to develop generic user interface elements.

They used PHP as the server script and the database

abstraction library ADOdb to achieve their goal. The metadata

is extracted from the database by using the ADOdb metadata

methods. This metadata information combined with a

developed set of rules is used to automatically map each

column in the database table to a specific user interface

control. The proposed model uses a set of rules which are

extracted from the database to build the Web form; these rules

are again built within the application code, where it is not easy

to maintain them.

D. Approaches to Implementing Active Semantics

with XML Schema

 XML Schema uses elements and attributes to express

semantics of XML data, but XML Schema does not have

active elements. Bernauer et al. in [8] proposed an approach

which implemented an Active XML Schema with XML

Schema that defines active behaviour to enrich XML

documents. Active XML Schema specifies active behaviour

by using Event-Condition-Action rules, which automatically

performs an action as reaction if a given condition applied.

They do not use RuleML.

E. RuleML as Rulebase

 RuleML provides a format for what is claimed [9] to be a

natural form for human reasoning and behaviour, that is if-

then-rules. However the individual rules need to be

developed into a Rulebase. In a different domain to ours

Schmidberger et al. in [9] have mentioned that there is no

established standard rule format for industrial plant

information reasoning available. They described an approach

 create table address(
 building_no char (5),
 street char (20),
 town char (20),
 postcode char (25));

 create table person (

 id serial,

 name char (25),

 address address);

which implements rulebase engineering of automation

systems. The system was created especially for the automatic

instantiation of Asset Management Functionalities and the

automatic creation of interlocking control code. They have

used a rule format based on a combination of RuleML and

MathML elements in the logic part. Thus, in the context of

rulebase automation of plant engineering tasks there will be a

need for common description of such rules in a format, which

is understood by humans and can be interpreted by a computer.

III. APPLICATION DEVELOPMENT

 This section introduces a mechanism, which aims to

design a framework, using an XML format, to save database

table’s metadata in an external format using RuleML in order

to support the creation of tables using domains as attribute

types, and composite attributes, which consist of groups of

values from more than one domain. This can be used with

RuleML rulebases in order to generate automatic and dynamic

Web forms. The proposed framework consists of several

processes as shown in Figure 4. The following objectives are

intended to be achieved.

 Store table’s metadata in XML files. These files uses

XML tags to describe the tables and it’s columns

information as:

 <Rulebase><table><name> </name>

 <column><name> </name>

 <type> </type>

 <size> </size>

 <isnull> </isnull>

 <unique> </unique>

 <key> </key>

 </column>

</table></Rulebase>

Each column is represented in a single XML node, and the

empty tags could be included.
 Create database tables using the stored metadata for

new database or recreate the existed database tables.

To create the new tables a PHP script is used which

reads the structure of the table stored in XML files.

This script then creates the SQL script which actually

creates the table in RDBMS.

 Apply Rulebase in conjunction with the metadata of

each column stored in XML file to map each column

to the correct Web entry control element.

 Generate Web form element.

Figure 4 Framework mechanism

To illustrate this mechanism and investigate if there are

any difficulties in implementing it, the following sections

introduce an example of the implementation of this approach.

A. Table’s metadata in XML files for table creation

 A database schema is represented in RuleML file. This

RuleML information uses XML tags to describe the tables,

columns, and rows. It is used for modelling database

information, so the previous structure of composite attributes

or domains could be represented in XML tags as in Figure 5

and Figure 6 below:

Figure 5 address table’s metadata represented in XML tags

Store tables metadata in

XML format

Create form elements

Web form

Apply rulebase

Create database tables

Figure 6 staff table’s metadata represented in XML tags

B. Database tables creation

 To create new tables a PHP script is used to read the

structure of the table stored in XML files as in Figure 5,

Figure 6. This script then creates the SQL script as shown in

Figure 7, which actually creates the tables in the RDBMS.

Figure 7 SQL script created dynamically using table’s metadata stored in
XML files

As a result of the created SQL script the tables originally

specified in the XML file will be created as below:

 CREATE TABLE addressnew (

 address_id integer NOT NULL,

 building_no integer NOT NULL,

 street character(20) NOT NULL,

 city character(20) NOT NULL,

 post_code character(10) NOT NULL);

 CREATE TABLE staff (

 staff_id integer NOT NULL,

 title character(6) NOT NULL,

 first_name character(20) NOT NULL,

last_name character(20) NOT NULL,

date_of_birth date NOT NULL,

address_id integer NOT NULL);

C. Existing table’s metadata stored as XML format

 In this section we address how to store a table’s metadata

in an XML format, particularly for systems that do not support

domains and composite attributes. Database metadata can be

represented in a XML file, this XML file uses XML tags to

describe the tables and columns metadata, it is for modeling

database information, so the metadata is stored into XML

format.

1. Staff table metadata stored in XML format

 The database metadata is stored in a XML format in

separate files, as the example used in the prototype

implementation the staff table metadata stored in XML file as

shown in Figure 8. The XML file includes all the required

information to (re) create the table in an RDBMSs whether it

support domains or not. The tags organized to specify each

column’s metadata in separate column tags. As shown in

Figure 8 below the table staff consists of 8 columns the last

two columns are created using domains, each column refers to

a separate domain as below:

 <column>

 <name>address</name>

 <type>domain</type>

 </column>

 <column>

 <name>Branch</name>

 <type>domain</type>

 </column>

Figure 8 Staff table metadata stored in XML format

2. Domain tables metadata in XML format

The database domain’s metadata and the structure of the

composite attributes are stored in XML format as shown in

Figure 9. Each domain in the previous XML file shown in

Figure 8 is connected with the XML domains file shown in

Figure 9. A domain can be used inside another one as shown

in the address that contains a postcode column which is itself

a domain. The structure of the post code column is also

included in the domains file.

Figure 9 Domain tables metadata in XML format

3. Generate the Web forms

We now demonstrate the use of the XML metadata format

to generate the Web forms. By using the stored metadata files

in conjunction with the RuleML Rulebase, PHP script is

written to loop through all the metadata for each column in

every table and uses the RuleML rulebase to map each column

to a Web form element, and the required fields label generated

from the <isnull>false</isnull> on the fly.

From the generated Web form which is shown in Figure 10

we can see how the composite columns’ attributes are

generated by using the domain address table and how the

domain table can be used many times. Figure 10 shows the

result of using address domain table twice within one form,

the first one is to generate the staff’s address elements and the

second one is to generate the branch address elements using

the same domain. Additionally within each address the post

code is itself another domain.

Figure 10 User interface form generated automatically using metadata stored

as XML format and rulebase as RuleML format.

IV. CONCLUSION

 XML Schema uses XML elements and attributes to

express the structure of XML data, which may be comparable

to RDBMS data, but XML Schema does not do everything. It

can be used to express some limitations of data such as

possible ranges of values and characteristics such as

uniqueness. It does not have active elements which would

allow us to express more behavior; however these can be

found in an XML format in RuleML's Event-Condition-

Action like elements.

To overcome some RDBMSs limitations RuleML is used to

represent RDBMS data by storing database metadata in an

external format, so it is also a way to overcome the differences

between RDBMSs in areas such as whether they support

domains and composites. Thus we propose a way to give a

single syntax that can then map them to structures supported

by a particular RDBMS and we test this by producing the

same result for the Web form.

 As a result a Web form for user interface is generated

dynamically that corresponds to the database being used and

at the same time maximizes the use of semantics in metadata

or elsewhere. RuleML can also drive automatic javaScript

validation code as well as form layout.

 So XML Schema alone is not sufficient but by using a

RuleML format we can go one stage further to implement

more semantics for both database structures themselves and

the Web forms built dynamically to access them.

REFERENCES

[1] Using domains. Available: http://dcx.sybase.com/1200/en/dbusage
/domains-integrit.html. [Accessed: 12 Dec. 2015].

[2] PostgreSQL extended or object relational features. Available:

http://www.comp.brad.ac.uk/~postgres/postgreSQL/worksheet5.html.
[Accessed: 12 Dec. 2015].

[3] PostgreSQL: The world's most advanced open source database.

Available: http://www.postgresql.org/. [Accessed: 12 Dec. 2015].
[4] A. Elbibas and M. J. Ridley, "Developing Web Entry Forms Based on

METADATA," Presented at International Workshop on Web Quality

in conjunction with ICWE 04- International Conference on Web
Engineering 2004. Available: http://www.pst.informatik.uni-

muenchen.de
[5] Understanding JDBC Metadata. Available:

http://www.databaseskill.com/1323105/. [Accessed: 9 Aug. 2015].

[6] M. M. Elsheh and M. J. Ridley, "Using Database Metadata and its

 semantics to Generate Automatic and Dynamic Web Entry Forms,"
in Proceedings of WCECS 2007 World Congress on Engineering and

Computer Science 2007, pp. 654-658.
[7] M. A. Mgheder and M. J. Ridley, "Automatic Generation of Web User

Interfaces in PHP Using Database Metadata," in Proceedings of

Internet and Web Applications and Services, 2008. ICIW '08. Third

International Conference on, 2008, pp. 426-430.
[8] M. Bernauer, G. Kappel, and G. Kramler, "Approaches to

implementing active semantics with XML schema," in Database and

Expert Systems Applications, 2003. Proceedings. 14th International
Workshop on, 2003, pp. 559-565.

[9] T. Schmidberger and A. Fay, "A rule format for industrial plant

information reasoning," in Emerging Technologies and Factory
Automation, 2007. ETFA. IEEE Conference on, 2007, pp. 360-367.

http://www.pst.informatik.uni-/

