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Abstract— Clustering is the organization of a set of data in
homogeneous classes. It aims to simplify the representation of the
initial data. The automatic classification recovers all the methods
allowing the automatic construction of such groups. This paper
describes the design of neural classifiers with radial basis
function (RBF) using a new algorithm for characterizing the
hidden layer structure. This algorithm, called k-means
Mahalanobis distance, groups the training data class by class in
order to calculate the optimal number of clusters of the hidden
layer, using the validity index of Davis Bouldin. To initialize the
initial clusters of k-means algorithm, we have used the method of
logarithmic spiral golden angle. Two examples of data sets are
considered to show the efficiency of the proposed approach and
the obtained results are compared with basic literature classifier.

Keywords—Radial Basis Function neural network;
classification;   k -means;  validity index;  Mahalanobis distance;
Logarithmic spiral; golden angle; golden ratio.

I. INTRODUCTION

Introduced into the neural network literature by Broomhead
and Lowe [1], the radial basis function neural networks have
been widely used for function approximation, pattern
classification and recognition due to their structural simplicity
and faster learning ability [2], [3]. However, their design still
remains a difficult task due to the absence of systematic
method giving an optimal architecture [4].

RBF neural networks consists of three layers: an input, a
hidden and an output one. The input layer corresponds to the
input vector feature space and the output layer to the pattern
classes [5]. So the whole architecture is fixed only by
determining the hidden layer and the weights between the
middle and the output layers [6].

Its training procedure is usually split into two successive
steps. First, the centers of hidden layer (HL) neurons are
selected by clustering algorithms such as k-means [7], [8],
support vector machine (SVM) [9] or hierarchical clustering
[10]. Second, the weights connecting the hidden layer with the
output layer are determined by supervisor algorithms such as
Neural Networks. One of the used techniques to find the
optimal number of this HL is the logarithmic spiral which have

seen a significant amount of research on nature-inspired
optimization techniques such as neuro-computing in the past
25 years, evolutionary and genetic algorithms, particle swarm
optimization. Most recently, a new multipoint meta-heuristics
search method has emerged for 2-dimensional continuous
optimization problems based on the analogy of spiral
phenomena in nature, called 2- dimensional spiral optimization
first proposed by Tamura and Yasuda in 2010 [11].

Focused spiral phenomena are approximated to logarithmic
spirals, which frequently appear in nature, such as whirling
currents, nautilus shells and arms of spiral galaxies. A
remarkable observation about logarithmic spirals is that their
discrete processes generating spirals can realize effective
behavior in meta-heuristics. Two-dimensional spiral
optimization uses the feature of logarithmic spirals [11].

In this paper, a new learning algorithm is proposed for
construction of the radial basis function networks solving
classification problems. It determines the proper number of
hidden neurons automatically and calculates the centers values
of radial basis functions. After the selection of the hidden
neurons, the widths of nodes are determined by the P-nearest
neighbors heuristic, and the weights between the hidden layer
and the output layer are calculated by the pseudo-inverse
matrix.

The aim of this approach consists in transforming the
problem of determing the number of hidden layer neurons to a
clustering problem. In order to determine the clusters number
in the data of each class, the k-means algorithm is combined
with the validity index of Davis Bouldin. In k-means
algorithm, the used distance corresponds to the Mahalanobis
distance. We also give a solution to overcome the problem of
initialization of initial centers needed to start this algorithm
using our method " The logarithmic spiral golden angle". Two
different real databases are used in order to evaluate the
proposed classifier performances.

II. THE LOGARITHMIC SPIRAL GOLDEN ANGLE

The logarithmic spiral golden angle is a specific case of the
logarithmic spiral. It represents a plane curve centered in a
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starting point and parameterized by the radius r , the angle 
and the Golden Ratio  .

A. The logarithmic spiral

A Logarithmic Spiral is a plane curve for which the angle
between the radius vector and the tangent to the curve is a
constant [12]. Such spirals can be approximated
mathematically defined by the following equation on the 2-
dimensional polar coordinates system  ,r  as [11] :

br a e  (1)
where a and b are positive real with 0a  and b is not zero.
Equation (1) can be transformed into Cartesian coordinate as
follows:
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In our work, we have set the factor b of the logarithmic spiral
to zero  ( 0b  ), it goes back to simplify the polar radius as
follows: 0br ae ae r a    
We obtain the following equation of the logarithmic spiral
golden angle:
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B. The Golden ratio

The irrational number, golden ratio is also known as golden
section by the ancient Greeks, golden proportion, divine
proportion or golden number [13].

The golden ratio  , has many properties in which people are
eager to know. It is a number that is equal to the reciprocal of

its own with the addition of 1:
1

1

  .

Likewise, the ratio of any two consecutive Fibonacci numbers
converges to give approximates of 1.618, or its inverse, 0.618.
This shows the relationship between Fibonacci numbers and
golden ratio [14].
If we can divide a line in such a way that the ratio of the whole
length to the length of the longer segment happen to be equal
to the ratio of the length of the longer segment to the length of
the shorter segment, then we can say the ratio is golden ratio
[13].

Figure 1. Divising of a whole length AC into two segments AB and BC .

This gives mean ratio if
AB AC

BC AB
 . If we set the value of AB

to be x , and use 1 to represent the length of BC, then
1

1

x x

x


 . Then the irrational number is the only positive

solution of the equation 2 1 0x x   , so
1 5

2
x




where the Greek letter phi ( ) represents the golden ratio.

Its value is:
1 5

1,6180339887
2




  .

C. The Golden angle

In geometry, the golden angle is created by dividing the
circumference of a circle c in two sections, a longer arc of
length a and a smaller arc of length b such that: c a b 

and
a b c a

a a b



  

Figure 2. Golden angle measurement

The angle formed by the arc b of circle c is called the
golden angle . It derives from the golden ratio  .
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III. PROPOSED INITIALIZATION OF THE K-MEANS

ALGORITHM WITH LOGARITHMIC SPIRAL GOLDEN ANGLE

The k-means algorithm aims to minimize the distance
between the object and the center of its groups. In this section,
we present the k-means algorithm based on the Mahalanobis
distance.

A. K-means algorithm Mahalanobis distance specifications

There are different types of distances such as: Minkowski
distance, the average, the family of metrics, Euclidean
Weighted and the Euclidean distance which is the most used
one, e.g. applied in the RBF Networks. [15]

Moreover, the Mahalanobis distance is a distance measure
and its utility is a way to determine the similarity between two
multidimensional random variables, and it differs from
Euclidean distance, because the Mahalanobis distance takes
into account the correlation between random variables, [15].
The Mahalanobis distance is defined by:

     1
( , )

T
d x y x y Cov X x y


     (4)

where  Cov X is the covariance matrix. If the elements x

and y are independent, the covariance matrix is the identity
and the Mahalanobis distance is equal to the Euclidean
distance. The algorithm based on the Mahalanobis distance k-
means is described by the following steps:

Algorithm: Function Kmeans_distance_Mahalanobis (KDM)

Begin
Input: - The database  1 2, ,....., d

NX x x x R  .

- The position of each center  1 2, ,..., d
kC c c c R  .
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Output: - The new position of each center  * *
1 ,..., d

kC c c R  

Step 1:
- Determine the size N of the data base of X .
- Determine the number of k centers to use in the
observation space C .
- Initialize the vector of new positions centers *C to zero.

Step 2: - Determine the covariance matrix  Cov X with

the following equation:

  
1

1
( )

1

N T

ij j ij j
i

Cov X X X X X
N 

  
 

with ijX X ; 1,...,i n and 1,...,j p .

Where
1

n

j ij
i

X X


 with jX : arithmetic averages.

While : The new centers as not undergo significant
displacement Do :
Step 3: - Assign each observation (dot) group nearest center

jc : l jx c according to the Mahalanobis distance formula:

     1
( , )

T

i j i jd i j x c Cov X x c


    

with Nl ,...,1 and kj ,...,1 .
Step 4: - Recalculate the position of each new center :

* 1

l j

N

j l
x cj

c x
N 

 
with jN = the set of points belonging to the center jc and

1,...,j k .
End While
End

The execution of the k-means algorithm requires the
determination of the initial centers values. These values are
usually selected in a random manner. Each boot (initialization)
is a different solution (local optimum) which can in some cases
be far from the optimal solution (global optimum) [16] . A
simple solution to this problem is to run the algorithm several
times with different initialization and retain the best
combination found. The use of this solution is limited because
of its cost and we can find a better score in a single execution
[17].

To solve this problem, we propose a solution to initialize the k-
means algorithm using the logarithmic spiral golden angle.
parameterized by the radius r , the angle  and the Golden
ratio  and the Golden angle  .This solution is divided en
several steps:

The first step is to calculate the maximum distance
between two individual points  ,a b belonging to the

database, then to define the middle ground G between these

two individuals and determine the radius R Gb “Fig. 3”.

Figure 3. Tracing of the two most distant individuals  ,a b and their

medium G .

The second step is to calculate the golden number  by

applying the following formula:
1 5

1,6180339887
2




 

The third is to initialize the values of the logarithmic spiral

golden angle on the polar coordinates system  ,r  : the radius

0 0r a a   and the angle 0 0   .The angle 

increases by the factor
 1

2d





 


and the radius r

increases by the factor
max max

G
d

k

R b
a

k
  .

To determine maxk we adopted the suggestion of Bezdek [18]

as follows : maxk N , ( N is the size of the database) .

Figure 4. Tracing of initialization of the k centers maximum on the outline
of the logarithmic spiral golden angle

The forth step is to determine the positions of the centers
of the logarithmic spiral golden angle with center G and radius
r a “Fig. 4”. The calculation of the center position kC is
performed by applying the following formula:

cos( )

sin( )
kx x

ky y

C G a

C G a




  
   

(5)

With d    ; a a da  and max1,...,k k .

Thereafter, we will save the positions of these maxk centers in

the variable  1 max,...,k kC c c .

The basic principle of the strategy adopted is summarized
in the following algorithm:

a

b
G

R



Algorithm: Init_Centres_Kmeans_ Logarithmic_Spiral

Begin
Input: - The database  1 2, ,....., d

NX x x x R  .

- The maximum number of centroids maxk .

Output: - The position of each center  1 max,.., ,..., d
k kC c c c R 

Step 1: - Calculate the maximum distance D between two
points belonging to the base X .

- Calculate the center G of D and the radius R Gb .
Step 2: - Calculate the golden ratio  by applying the

following formula:
1 5

2





Step 3: - Initialize the values of the logarithmic spiral
golden angle on the polar coordinates system  ,r  : the

radius 0 0r a a   and the angle 0 0   .
- Fixing the increment of the angle  by the factor

 1
2d





 



- Fixing the increment of the radius r by the factor
1 1

da
R Gb
 

Step 4: - Determine the positions of the centers belonging to
the logarithmic spiral golden angle with center G and  radius
r a according to the following formula:

cos( )

sin( )
kx x

ky y

C G a

C G a




  
   

With d    ; a a da  and max1,...,k k .
Step 5: - Save the positions of the centers found in

 1 max,.., ,..., d
k kC c c c R  .

End

B. Evaluation Measures

Using a non-supervised clustering algorithm, such as k-
means algorithm, requires the determination of the number k
of groups leading to the execution of the algorithm repeatedly
for different values of this parameter. For optimal number of
groups, a criterion should be used to evaluate the result of the
algorithm. This criterion is known as the validity index [19]–
[22] [15, 16, 17, and 18] name based on the notions of
compactness and separation.

In literature, there are a lot of validity indexes, most of
them are based on the notions of compactness within different
groups and separability between these different groups. In this
article, we will use the Davies-Bouldin index as an index of
validity of neural classifiers.

C. Index Davies-Bouldin

This index takes into account both the compactness and the
separability of groups [23] and its value is much lower than
the groups are compact and well separated. It promotes
hyperspherical groups and is therefore particularly well suited
for a use with the k-means algorithm. The DBI index is defined
by the following expression:

    
 1

1
max

,

k c i c j

DB
i j

i cc i j

d c d c
I

K D c c


  (6)

Where  c id c is the average distance between an object and its

group ic following the center and  ,cc i jD c c is the distance

between the centers of groups ic and jc with:

 
1

1 lN

c i l j
ll

d c x c
N 

  (7)

 ,cc i j i jD c c c c  (8)

IV. NEW ALGORITHMS FOR THE CONSTRUCTION OF THE

HIDDEN LAYER OF THE RBF CLASSIFIER

We proposed a new algorithm to characterize the hidden
layer classifier i.e. to determine the number of centers of
different Gaussian and the value of each center.

In what follows, we present the principle of the proposed
algorithm and explain how the validity index of Davies-
Bouldin is combined with the k-means algorithm with
Mahalanobis distance to determine automatically the number
k of groups.

However, it is necessary to fix a maximum number of
centroids maxk . The maxk value can be defined by the user if he
knows the structure of his database. Given that it’s not always
the case, the Bezdek [18] suggestion is adapted, so we choose

maxk N ( N is the size of database).

Applying this algorithm to all classes and summing the
number of obtained groups, the number of neurons in the
hidden layer is determined. A neuron is then assigned to each
group. For this RBF classifier we partition the data base

 1 2, ,....., d
NX x x x R  in individual blocks according to the

number of output classes 1,2,...,j m  . We get

 1 2 . .
T

d mX X X X   .

Then, we apply the principal component analysis (PCA)
with the data base dX to reduce it to a new base in two

dimensions   2
1 2,dX x x R   .

Principal component analysis (PCA) is a widely used
statistical technique for unsupervised dimension reduction. K-
means clustering is a commonly used data clustering for
performing unsupervised learning tasks [24]. The PCA is
based on the calculation of averages, variances and correlation
coefficients. The main basis of dimension reduction is that
PCA picks up the dimensions with the largest variances. In
our case, we choose the two largest variances.

The next step is to determine the number of centers and the

center position of each class  1 1,...,
d

kC c c R   through the

classifier based on the k-means algorithm with Mahalanobis
distance.



We group the centers of each class 1,...,j m  found in the

1

.

.

m

C

C

C





 
 
   
  
 

matrix and we apply the k-means algorithm

Mahalanobis distance for the new positions of the centers

 * * *
1 2, ,....., d

KC c c c R   .

To complete the construction of the hidden layer classifier,
there is a second parameter to consider in the neurons, which
is the width factor j for each centroid jc ( 1,...,j k ). This

factor is calculated using the following formula:

1

1

8

Na

j i j
ia

x c
N




  (9)

A. RBF classifier based on the k-means algorithm with
Mahalanobis distance KMD-LS-IDB

The proposed algorithm based on the k-means algorithm
with Mahalanobis distance (KMD-LS-IDB) determining the
number and the centers values is described below.

Begin
Input:
- The block database  1,...,

d
j mX X X R    of one

class of data base dX , Taking the case of the block. (The
same approach for other classes).
Output: - The position of each center  1 1,...,

d
kC c c R   .

Step 1:
- Determine the size n and the number of characters
(attributes) p of the data base 1X .
Step 2: - Initialize the minimum number of centroids

min 2K  and then look for the maximum number of

centroids by maxK n .

- Initialize the variables mina k K  and 1b  .
Step 3: - Apply Algorithm Init_Centres_Kmeans_
Logarithmic_Spiral which initializes the centers for
kmeans algorithm of the data base 1X .

Step 4: - Repeat the following steps until maxk K
Step 4.1: -If max 1k K  Then:

- Take the following positions centers  1,...,
d

aC c c R  .

- Deduct the number of centers k .
End If

Step 4.2: - Apply k-means algorithm with Mahalanobis
distance to determine the new positions of the

 * *
1 , ..., d

aC c c R   centers.

Step 4.3: - Calculate the compactness and separability of
groups with the Davies- Bouldin Index by variable DBI .

Step 4.4: - Save DBI variable in the table called _Tab IDB .

Step 4.5: - Increment variables 1a a  , 1b b  .
Step 5: - Determine the DBI lowest index of the table

_Tab IDB in variable  .

- Take the following positions centers  1 1 1,..., dC c c R  

as the optimal number required classifying 1 class
centers.
End

B. Calculation of synaptic weight

After determining the parameters of the proposed classifier
hidden layer, the learning is finished by the calculation of the
synaptic weight ijw , connecting the hidden layer neurons to

those of the output layer. The linearity property of the outputs
( )j ly x of the network is used. The expression of each of the

m outputs is written in the form:
( ) ( )j l j l ijy x h x w  (10)

The global output of the network is written as follows:
Y H W  (11)

The objective is to determine the matrix W that minimizes
an error function, chosen as the square of the sum of
classification errors. The weight of the output layer can be
calculated by the following matrix equation:

 

11 12 1 1 1

21 22 2 2 2

1 2

........

........

... ... ........ ... ... ...

........

M

M

N N NM M M

W YH

w y

w y

w y

  
  

  

     
     
      
     
     

    

(12)

With H : The matrix Gaussian widths ( ij ).

Y : The matrix of the output layer.
W : The weight matrix of centroids.

The above equation is of the form:
1H W Y W H Y     (13)

Given that the H matrix is rarely square, the pseudo- inverse
of the matrix H is applied according to equation (14):

1T TW H H H Y


      (14)

V. EVALUATION OF RBF CLASSIFIERS

The purpose of this section is to evaluate the performance
of proposed RBF neural classifier. The performance of the
RBF neural networks classifier is tested with two different
databases: Iris and Wine among the different data sets
available from the machine learning community by the
University of California at Irvine (UCI) [25].

The first test is carried out with Iris database which is one
of the most popular data set to examine the performance of
novel methods in pattern recognition and machine learning. It
is composed of three classes (i.e., iris Setosa, iris Versicolor
and iris Virginica) each having 50 patterns with four features.

The second test is done with the Wine database which
includes the results of a chemical analysis of wines produced
in different regions of Italy from different grape varieties. The
concentration of 13 components are indicated for each of the
178 wines (patterns) which are analyzed and divided into
three classes (59 in Class 1, 71 in Class 2 and 48 in Class 3).



To evaluate the proposed classifier performances, the
holdout method is used. It consists on dividing the initial data
into two independent sets: one for training and the other for
testing the classifier performances.

The results given by the RBF classifier built with our
algorithm are compared with those obtained with other neural
classifiers: the Learning Vector Quantization (LVQ) classifier
proposed by Kohonen, the RBF neural network classifier for
which the hidden layer is obtained using adaptive Pattern
Classifier (APCIII) [26], the Multi-Layer Perceptrons
classifier (MLP) and with a reference one, the K nearest
Neighbor (KNN). The present comparative results of different
classifiers over Iris and Wine are illustrated in Table I and
Table II.

Considering Wine database, the best recognition rate is
obtained by the KMD-LS-IDB proposed classifier. For Iris
database the best recognition rate is given for the KNN
classifier, however the difference with the proposed classifier
is not important.

Then, the proposed algorithm gives good results in term of
recognition rate but the most powerful of them is the classifier
KMD-LS-IDB.

TABLE I. RESULTS OF THE RECOGNITION RATE OVER IRIS DATABASE

Classification algorithms Database : Iris
KMD-LS-IDB 93.46 %

LVQ 94,00 %
APCIII 93,33%
MLP 96,66 %
KNN 96,70 %

TABLE II. RESULTS OF THE RECOGNITION RATE OVER WINE DATABASE

Classification algorithms Database : Wine
KMD-LS-IDB 98,88 %

LVQ 66,14 %
APCIII 67,04 %
MLP 73,80 %
KNN 70,45 %

VI. CONCLUSION

In this paper, a new algorithm is proposed, to design RBF
neural network classifier and to select the centers of the
hidden layer neurons in particular.

The basic idea of this approach is to select the training data
from the database class by class and to decide of the optimal
number of neurons in each class by using the validity index of
Davies-Bouldin which is integrated in the K-means algorithm
with the Mahalanobis distance.

We also proposed a solution to overcome the problem of
initialization of centers necessary for the start of the K-means
algorithm using the method of the logarithmic spiral golden
angle. The obtained classifier results are satisfactory in
comparison with other considered classifiers in the literature
for two real databases (Iris and Wine).
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