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Abstract—this work focuses on modelling, optimal control and 
numerical simulation of the ship electric propulsion system 
provided by a double star synchronous machine. The in-depth 
analysis of the operation of the propulsion system of the vessel 
allowed us to model elements of the propulsion system. Thus, a 
non-linear global model was obtained describing the operation of 
the entire propulsion system. The nonlinear model is linearized 
about the nominal operating point on which an optimal control 
using a ship speed state observer is applied. The performances 
and the effectiveness of the studied approach applied to a ship 
electric propulsion is highlighted through numerical simulation, 
using Matlab/Simulink, to ensure perfect tracking of ship speed. 

 
Keywords— Optimal control, Sate observer, Double star 
Synchronous motor, Ship electrical  propulsion system 

I. INTRODUCTION 

During last decades, the electric propulsion for cruise ships 
has been adopted by a growing number of shipowners. This 
trend towards the use of electrical power for the propulsion of 
ships is made possible by the improved power electronics 
components. The power distribution is fully electric and 
virtually common to the onboard network and to the propulsion. 
The advantage of electric propulsion ship is to globalize all 
energy needs and with the same generators, to provide the 
necessary electricity for propulsion as well as at the edge of the 
network [4], [10]. 

The major decision criteria for the adoption of electric 
propulsion vary from one ship type to another, acoustic 
discretion for submarines, research vessels and military ship, 
low noise and vibration for the ship cruise, perfect torque 
control at all speeds for an icebreaker, precision and flexibility 
for manoeuvre for dynamic positioning ships, ferries or fishing 
vessels, space saving on tankers, to increase cargo or decrease 
the length of the vessels. To these criteria are added the 
advantages common to all types of ship, such as: reduced 
maintenance, increased operational safety, reduced pollution. 

The multiphase machines are the subject of growing interest, 
especially the double synchronous motor star 'DSMS' for 
different reason, such as: 

 As the multiphase machine contains several phases, this 
for a given power, the electric currents are reduced by 
phase and that power is distributed over the number of 
phases. 

 Improved reliability by providing the ability to function 
properly degraded systems. 

Generally the electrical equipment comprises two sets: Power 
& Propulsion: 
 

 The power plant comprises generators driven by diesel 
engines. It supplies energy for all the distributors on the 
ship and in particular for propulsion equipment. 

 The propulsion equipment comprises electric motors, 
controlled continuously by frequency converters for 
varying the speed of the propellers from 0 to 100% in 
both directions of rotation. Unlike diesel engines, the 
electric motors powered by the frequency converters are 
able to provide maximum torque at all times, even at very 
low speeds and in both directions of rotation. They 
therefore used the propeller with fixed blades whose 
braking ability of the ship is excellent when the rate is 
controlled by an electric motor. The torque provided by 
the electric motor is used to drive the propeller back 
whatever the speed of the ship. This paper deals mainly 
electric propulsion of a vessel equipped with a double 
Star synchronous motor. Modelling techniques for vessels 
electrically driven such that the electric drive motor, the 
propeller and movement of the ship, having a non-linear 
behaviour, have been developed. A simulation of the 
electric propulsion system of a vessel with control loop 
has been performed using the Matlab/Simulink software.  

The first section is consecrated to the ship electric 
propulsion. The second section is devoted to the modelling of 
ship electric propulsion system. The resulting nonlinear model 
is linearized around nominal operating point is treated to third 
section. The fourth section focuses to techniques of optimal 
control and its main criteria. The observer construction is 
studied in the fifth section and in the last section numerical 
simulations using the Matlab/Simulink software are reported to 
highlight the efficiency of the proposed control scheme. 

II. SHIP ELECTRIC PROPULSION SYSTEM MODEL 

A. Double star synchronous motor model 

The double star synchronous motor built with two 
symmetrical tree phase armature winding systems, electrically 
shifted by 30◦ and its rotor is excited by current source. The 
voltage equations of the double star synchronous motor are 
written as follows [2], [11], [12], [13]. 
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B. Magnetic Equations 
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The different currents 1 2 1 2, , , ,d d q q fI I I I I   are calculated 

based on flux  1 2 1 2
, , , ,

d d q q f
      

From the equations (2) of flux we obtain the following 
expressions: 
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C. Electromagnetic torque 

The electromagnetic torque is produced by the interaction 
between the poles formed by magnets to the rotor and the poles 
caused by magneto-motive F.M.M force in the gap generated 

by the stator currents. It is expressed by 
1 2em em em

C C C   

With:  
1 1 1 1 1em d q q d

C p I I and     
2 2 2 2 2em d q q d

C p I I    

Where the Electromagnetic torque: 

 1 1 2 2 1 1 2 2em d q d q q d q d
C p I I I I      

                
 (4) 

D. Mechanical equation 

m em f

d
I C Q Q

dt
   

                               
 (5) 

The mechanical equation of the shaft is: 
 1 1 2 2 1 1 2 2m d q d q q d q d f

I p I I I I Q Q                  (6) 

E. Modelling of the hull resistance  

The total resistance is given in Newtons and it is estimated 
by the expression [11], [12]: 

 
1

(1 ) (1.0 /100)
T F W APP B TR A AIR

R R K R R R R R R DMRA         (7) 

Where: 
 Rf: friction resistance, 
 1 + K1 = coefficient depending on the shape of the hull, 
 RAPP: appendages resistance (rudder, ailerons stabilizers ..) 
 RW: wave resistance, 
 RB: resistance due to the presence of a bulbous bow near 

the water surface, 
 RA: resistance due to the roughness of the hull and air 

resistance, 
 RTR: Whirlpool resistance can be neglected because the 

hull’s shape, 
 Rair:  aerodynamic drag, 
 DMAR: design margin on the strength in percent. The 

total resistance is increased by the term (+1.0 DMAR/100) 
This resistor can be modelled by a simple model which 

consists in approximating the total resistance by the square of 
the ship speed, given by [5], [7]:  

 
R=aV2                                                                       (8) 

 
Fig. 1  Hull resistance 

The value of "a" is calculated from the curve of Figure 11 
and its numerical value is: a 606.53 /N noeud  

F. Propeller Equation 

 When the propeller rotates in the sea, it develops torque and 
propelling force to move the ship. Experience shows that the 
thrust T and the torque Q depends on the following parameters: 

 ρ: Water density.  
 D: Propeller diameter 
 n: Propeller speed.  
 Va: propeller advanced speed 

The model of the propelling force T (thrust) and the torque of 
the propeller Q can be written respectively [5], [7], [10]:

            
 

4 2

T
T K D n and 5 2

Q
Q K D n                          (9) 

 The coefficients KT and KQ depends on the propeller’s 
advanced speed, the propeller pitch, the ship’s speed, the 
advance coefficient , wake coefficient and the propeller speed. 
The equations characterizing J and Va are given by: 



a
V

J and
nD

  a
1V V 

                        
 (10) 

To plot the characteristic curves of the propeller, we used a 
Propeller Optimisation Program (POP) developed by the 
University of Michigan department of naval architecture. This 
program allows the tracing of curves KT =f(J) , KQ=f(J)  and 
Eta0=(J) . The diagrams and coefficients are determined from 
field trials on the ship studied [5], [7]. These diagrams are 
shown in the following figure representing the evolution of KT 
and KQ according to J, with  / 2n     

 
Fig. 2  Example of an unacceptable low-resolution image 

The Curves ( )
T

K f J  and ( )
Q

K J   can be approximated 

by straight lines given by the following expressions: 

1 2TK r r J and  1 2QK s s J 
                    

 (11) 

Where r1, r2, s1 and s2 are constants that vary from one ship 
to another.  
The thrust T and the torque Q are functions of n and Va for 
different values of pitch propeller. 

Typical curves of thrust and torque coefficients of the 
propeller are given by the previous figures, where KT and KQ 
are based on J.  

 4 2

1 2
T D r r J n   and   5 2

1 2
Q D s s J n 

          

 (12) 

After substituting the expressions n and Va the expression of 
KT becoms: 

 2

1
1

T

r
K r V

nD
                                     (13) 

 Similarly and after substituting the expressions of J and Va 
the expression QT  becomes: 

     2

1
1

Q

s
K s V

nD
                                     (14) 

 By replacing the coefficients KT in the expression T of the 
propeller thrust T, the new expression of T is: 

  2 4 2 3

1 2
1T r n D r n D V    

                    
 (15) 

 By replacing the coefficients KQ in the expression Q of the 
propulsion torque Q becomes, the new expression of Q is: 

   2 5 2 4

1 2
1Q s n D s n D V                         (16) 

G. Ship motion equation 

The ship floating on the sea surface is subjected to external 
and hydrodynamic forces. 

The propulsion system comprises a motor coupled to a 
propeller shaft and a propeller with fixed blades. The equation 
of vessel motion is given by the following relationship [10]: 

 

   1
ext

mV R t T T                                     (17) 

  The equation of the shaft mechanical of the double star 
synchronous motor is: 

m em f
I C Q Q                                           (18) 

H. The block ship movement 

The system being studied is a vessel propelled by a double 
star synchronous motor coupled to a propeller with fixed 
blades whose main components are decomposed into beings 
subsystem. Figure 3 provides an overview on the structure of 
the system and the inputs and outputs of different subsystems. 

 

 
Fig. 3  Observed state feedback optimal control 

I. Setting as state of the overall system 

By replacing the electromagnetic torque Cem and propulsion 
torque Q by their respectively expressions (4) and (16) in the 
equation of the shaft line movement (18), we get the following 
equation: 
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Similarly by replacing the hull resistance R as well as the 

propeller thrust T by their respective expression (8) and (15), 
the vessel’s motion equation (17) becomes:  
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J. Global Model of the Ship Electric Propulsion System  

The global model of the ship electric propulsion using 
double star synchronous motor is represented by the following 
system. 
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By replacing the equation (2) in (21) it yields the system 
(22). Thus there was obtained a highly non-linear system of 
order seven. Where the parameters are given the in appendix. 
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III. LINEARIZATION OF THE SHIP ELECTRIC PROPULSION 

SYSTEM 

The global model of the ship electric propulsion using 
double star synchronous motor is represented by the following 
system. 

( ) ( )

( )

x f x g x u

y h x
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                                                (23) 

An industrial system is often intended to operate in 
regulation mode, i.e. the system output has to track an imposed 
reference signal despite of the various disturbances. Under 
these conditions, the use of nonlinear state representation for 

the purpose of control is not necessary. A linear local state 
representation is sufficient [6], [14]. The linearization of (22), 
around an operating point characterized by (x0, y0, u0), is given 
by: 
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Where: 

  
1 1 2 2
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1 1 2 2

T
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 A, B and C are the Jacobean matrices given by: 
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IV. OPTIMAL CONTROL PRINCIPLE 

To obtain an optimal control law for the ship electric 
propulsion system, we minimize the following criterion [3], [8], 
[9]: 

 
0

1
( )

2
T TJ u R u Q dt 


                        (25) 

With: R a symmetric positive definite matrix, Q a symmetric 
non-negative definite matrix. The control law is then given by: 

 ( ) ( ) ( )u t Fe t Kx t                                    (26) 

Where: ( ) ( ) ( )t e t y t   is the difference between the 

reference and the output vector. 

With  1ref 2ref ref frefe(t)= id id v i
T

the reference vector 

The gain F is given by: 
1 1 1( )T T TF R B A PBR B PCQ                         (27) 

 The gain K is given by the equation:  

     
1 TK R B P                                                         (28)  

 Where P is the solution of the Riccati equation:  
1 0T TP PA A P PBR B P Q    

                       (29) 
with  

TQ C Q C  

V. SHIP SPEED STATE OBSERVER 

To design the sate feedback optimal control law, it is 
necessary to reconstruct the ship speed V in order to be 
controlled. For this purpose, we propose a linear state observer 



using the output vector  
1 2

y(t)= id id
T

if n   and the input 

vector   1 2 1 2d du(t)= u u
T

q q f
u u u  

The structure of a Luenberger observer is given by: 
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ˆ ˆ
x Ax Bu L y y
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
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                                      (30) 

 Where: x̂  is the output vector of the state observer. The 
matrix L is the observer gain. This structure can be written in 
this form:   

ˆˆ ˆx Ax Bu Ly  
                                     (31) 

with  Â A LC   
To have an asymptotic convergence of the observed state 

towards the real state, it is necessary to choose the gain L such 
that the matrix (A−LC) has negative real part eigen values. The 
control law using the state observer is presented as follows [8], 
[9]: 

ˆ( ) ( ) ( )u t Fe t Kx t                             (32) 

 
Fig. 4  Observed state feedback optimal control 

VI.  NUMERICAL SIMULATION RESULTS 

 
The Q and R matrices are chosen as follows: 
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The gain of the optimal control Kopt obtained is the following: 
 

  

    0.2156   -0.0270    0.0123   -0.0491    0.5529    0.0001    9.9110

    0.2804   -0.0689    0.2750   -0.1089    0.1815    0.0003   12.6652

    0.0297   -0.0326    0.2339   -0.0450    0.5552    0optK  .0001   10.4330
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The gain matrix of the observer obtained L is: 
 

 

   -33.1224      -38.1385         3.7903             0
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    115.8725      32.9322        -2.4066            0
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The reference gain matrix F obtained by the resolution of the 
equation (27): 

 

  -0.0128   -0.0120   -0.7868   24.2730

  -0.0225   -0.0225    5.1470  -64.2004

  -0.0130   -0.0139   -0.4640   22.0222
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The transition matrix P determined from the Riccati equation is:  
         0.0514             -0.0124            0.0493             -0.0196            0.0038       4.6558e-005     1.6386

        -0.0124              0.0037           -0.0125              0.0055     
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     4.6558e-005   -1.3096e-005    4.6117e-005   -1.9839e-005    2.4780e-005   4.7843e-008    0.0028
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Fig. 5 Block diagram of simulation 
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Fig. 5  Reference ship speed and ship speed 
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Fig. 6  Observer ship speed and ship speed 
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Fig. 8 Reference stator current id1ref and stator current id1 

0 100 200 300 400 500 600 700 800
-50

0

50

100

150

200

R
ef

er
en

ce
 s

ta
to

r 
C

ur
re

nt
 i d2

re
f a

nd
 S

ta
to

r 
cu

rr
en

t 
i d2

 (
A

)

Time(s)

i
d2ref

 and i
d2

(A)

 

 

Reference stator Current i
d2ref

Stator current i
d2

 
Fig. 7  Reference stator current id2ref and stator current id2 
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Fig. 8  Stator current iq1 
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Fig. 9  Stator current iq2 
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Fig. 10  Motor speed 

VII. RESULTS INTERPRETATION 

The performance of the proposed strategy of the control law 
is shown in the previous figures. The ship speed is necessary 
for the reference speed vref=7m/s in the range [0, 400s] and 
vref=11m/s in the interval [400, 800s]. It is clear from Fig.6 that 
the proposed control law has enabled a convergence from the 
desired value of the ship speed. Figure 12 shows the behaviour 
of the motor speed. It is clear that the ship speed change when 
the propeller speed changes. In addition, we impose id1ref=0 and 
id2ref=0 as shown in Fig. (8) and Fig. (9), so that the 
electromagnetic torque is proportional to currents iq1 and iq2, 
the control the motor speed by changing the electromagnetic 
torque Cem changing currents  iq1 and  iq2 as shown in Fig. (10) 
and Fig. (11), through regulating voltages Vq1 and Vq2.  

VIII. CONCLUSION 

We have proposed an optimal control law with Luenberger 
observer to control the ship speed. The observer designed is 
used to reconstruct the ship's speed to complement the control 
strategy. It has been shown from the simulation results that the 
state feedback optimal control proposed allows the regulation 
of the ship speed converges exactly to the reference imposed. 
The digital validation was performed from a program written in 
Matlab/Simulink. The simulation results show the validity and 
the relevance of the proposed approaches. 
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APPENDIX 

The simulation results are obtained with the following 
parameters and values:  
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