
Design and control of Two-Wheeled Inverted

Pendulum Mobile Robot

 Sabri-M Ben Mansour Jawhar Ghommam Saber-M Naceur
 LTSIRS Department CEM-Laboratory LTSIRS Department
 National Engineering School of Tunis National Engineering School of Sfax National Engineering School of Tunis
 Tunis, Tunisia Sfax, Tunisia Tunis, Tunisia

 sabri.benmansour@gmail.com

Abstract: This paper addresses design and path following

control problem of a nonholonomic Two-Wheeled Inverted

Pendulum Mobile Robot. We propose control architecture based

on two control layers. A speed inner loop control scheme is first

designed based on state feedback technique to ensure stability of

the inverted structure of the robot. A second outer loop control

scheme is proposed to help the robot navigate along a desired

path formed by a set of way points. It is designed inspiring the

model predictive control technique. The elements of the

predictive control, which are the cost function, controls and

constraints, must be defined and specified: the use of different

trajectories group in the control can adapt the behavior of the

robot to different displacement phases.

Keywords: Mobile robot; navigation; stability; Predictive control

I. INTRODUCTION

The problem of nonholonomic systems control has
attracted numerous investigations in the past. A thorough
studied case, with great practical significance, is the wheeled
mobile robot with a kinematic model similar to a unicycle [1]
[2]. The differentially driven mobile robots that are very
common in practical applications also have the same
kinematic model. Although many researchers coped with the
more difficult problem of stabilizing dynamic models for
different types of mobile robots [3] [4] [5] [6], the basic
limitations of mobile robot control still come from their
kinematic model. Kinematic control laws are also very
important from the practical point of view, since the wheel-
velocity control is often implemented locally on simple micro-
controller based hardware.

Traditionally, the problem of mobile robot control has
been approached by stabilization point or by redefining the
problem as a tracking control one. There are also some
approaches that tackle both problems simultaneously. We
believe that the tracking control approach is somewhat more
appropriate, since the nonholonomic constraints and other
control goals (obstacle avoidance, minimum travel time, and

minimum fuel consumption) are implicitly included in the
path-planning procedure [7] [8].

We were looking for to develop certain tools, as the paths
optimization methods, and adapt them to our problem
navigation. The aim was to get an under constraints
optimization algorithm which can be implemented in a real-
time application.

The navigation method that we propose follows several
steps: to enable the robot to join the path provided by the
modeling environment, a catch curve is generated with the
authors approach in [9]. Based on the knowledge of the model
of the robot and its constraints, feasible trajectories can be
generated on a given time horizon. A constraint optimization
algorithm will then determine the closest feasible path by the
robot to the reference trajectory under constraints that we have
developed. Finally, the generated control law is provided to
the robot actuators, and applied according to a chosen
sampling time before reconsidering all the navigation process
reinitiating.

The problem statement is given in Section II. The
kinematic model and the Control design Approach are
described in Section III. The speed and predictive control
design are developed in Section IV. In Section V,
implementation is discussed. The conclusions are stated in
Section VI.

II. PROBLEM STATEMENT

Assume a two-wheeled, differentially driven, mobile robot
like the one depicted in Fig. 1, where (x, y) is the wheel-axis-
centre position and θ is the robot orientation. The kinematic
motion equations of such a mobile robot are equivalent to
those of an unicycle. Robots with such architecture have a
nonholonomic constraint of the form:

 γ . cos 𝜃 𝑡 − 𝜘 ̇. sin 𝜃 𝑡 = 0 (1)

PC
Typewriter
ISSN: 2356-5608

PC
Typewriter
Proceedings of Engineering & Technology (PET)

PC
Typewriter
pp. 100-106

PC
Typewriter
Copyright IPCO-2016

PC
Typewriter

PC
Typewriter

http://www.enib.tn/Actualites.html
http://www.enib.tn/Actualites.html
http://www.enib.tn/Actualites.html
http://www.enib.tn/Actualites.html
http://www.enib.tn/Actualites.html
User1
Typewritten Text
3rd International Conference on Automation, Control, Engineering and Computer Science (ACECS'16)

User1
Typewritten Text

Fig. 1. Mobile inverted pendulum

𝑥
𝑦

𝜃
 =

𝑟𝑟

2
cos 𝜃

𝑟𝑙

2
cos(𝜃)

𝑟𝑟

2
sin 𝜃

𝑟𝑙

2
sin(𝜃)

𝑟𝑟

2𝑟0

𝑟𝑟

2𝑟0

.
𝜃 𝑟
𝜃 𝑙
 (2)

Where θ r (t) and θ l (t) are the angular velocity of the right

wheel and the angular velocity of the left wheel.

III. THE KINEMATIC MODEL AND THE CONTROL DESIGN

It is possible to model the system described above by the
Newton-Euler method.

A. TWIPMR modeling

Modeling assumptions:

- The motor correctly filter the PWM.
- The inertia of the motor itself is neglected compared to

the inertia of the wheel.
- Motor inductance is neglected.
- Both motors have identical parameters.

 1) Mechanical equation of the motor: Consider the

general characteristics of the engine we find:

 Ui(t) = Ri .ii(t) (3)

 𝜃 𝑖(𝑡). 𝐼𝑖 = 𝑀𝑖
𝑗𝑛

𝑖=1 (𝑡) (4)

 𝑀𝑖
𝑗𝑛

𝑖=1 (𝑡) = 𝑀𝑖
1(𝑡) + 𝑀𝑖

2(𝑡) + 𝑀𝑖
3(𝑡) (5)

 𝑀𝑖
1(𝑡) = 𝑘𝑖 . 𝑛𝑖 . 𝑖𝑖(𝑡) (6)

 𝑀𝑖
2(𝑡) = −𝐹𝑖(𝑡). 𝑟𝑖 (7)

 𝑀𝑖
3(𝑡) = −𝑓𝑖 . 𝜃 𝑖(𝑡) (8)

 2) Motion equations of the robo: The moment of inertia is

on the axis center of the wheels

 𝐼0 . 𝜃 0(𝑡) = 𝑟0. 𝐹𝑟(𝑡) − 𝐹𝑙(𝑡) (9)

 𝑚0 . 𝑥 (𝑡) = 𝐹𝑁
𝑛=0 = 𝐹𝑟(𝑡) − 𝐹𝑙(𝑡) (10)

 𝜃 0 (𝑡) =
𝜃 𝑟 (𝑡).𝑟𝑟−𝜃 𝑙 (𝑡).𝑟𝑙

2.𝑟0
 (11)

 𝑥 0 (𝑡) =
𝜃 𝑟 (𝑡).𝑟𝑟+𝜃 𝑙 (𝑡).𝑟𝑙

2
 (12)

The state model can then be discretized to get the form below
with system sampling period chosen to 10 ms.

X(k+1) = . X(k) +  . U (k)

 Y(k) = C . X(k) + D. U(k)

 (13)

 , , C, D: matrices giving by Matlab calculation

B. Control design

In the literature, the control law for the tracking path is
based on the assumption that the robot speed limits are
directly transmitted [10] [11]. This hypothesis corresponds to
a control in perfect speed.

This separation between low-level (robot speed control)
and High-level (tracking path) in Fig. 2 appears to be a good
solution for many reasons:

- Appropriate segregation of duties for readability

- Best potential for reusability

- Debugging easier when implementing

IV. THE SPEED AND TRAJECTORY CONTROL

A. Control speed

 Based on the discrete state model, it is possible to
synthesize a controller state. The choice fell on the optimal
control [12] that responds to the needs perfectly as shown in
bloc diagram Fig 3.

The cost function to be minimized is:

 𝐽 =
1

2
 𝑥𝑇(𝑘)𝑄1𝑥(𝑘) + 𝑢𝑇(𝑘)𝑄2𝑢(𝑘) 𝑁
𝑘=0 (1 4)

 We must therefore choose the matrices Q1 and Q2. They

are selected positive diagonals. The weight of the position is

zero. The weight of the speeds is much higher than the voltage

of the engine.

Fig. 2. The two controllers in cascade

Matrices:

 𝑄1 =

0
0
0
0

 0
 100′000
 0
 0

 0
 0
 0
 0

 0
 0
 0
 100′000

 (15)

 𝑄2 =
10
0

 0
10
 (16)

The dlqr control Matlab gives the optimum gain. Thus, the
voltage applied to closed loop is:

 U(k) = KG. X(k) (17)

Where KG is a Gain obtained by Matlab calculation

Fig. 3. Block diagram of the control speed

B. Path Tracking

 From the information provided by the planer, a remedial

curve, connecting the current position of the robot and the

desired position can be determined. This curve is a purely

geometric, which is not related to time, but that can take into

account certain geometric constraints robot (size, turning

radius). Angular velocity ω = θ of the robot is used as a

control variable as shown in fig. 4.

Fig. 4. Path Followed by robot

The purpose of the proposed control law is to reduce both the

error in distance and orientation:

 e =  - des (18)

It is given in its simplest form by:

 ω = υ. p(sR′) − k1. d − k2 . θe (19)

 Where sR’ is the curvilinear abscissa of the point 𝑅0. k1

and k2 are two positive constants. Constant values for
limiting the oscillations can be obtained in the case of a
straight path:

k1 = ξ2

k2 = 2ζξ
 (20)

C. Our approach of the Predictive Control

 1) The cost function: This cost function calculates the

square error between the reference trajectory and the robot

path, by weighting differently the various components of the

state of the robot and also by weighting differently the

terminal error and the tracking error of the course [13] [14]

[15].

 𝐽(𝑘) = 𝑧 (𝑘 + 𝑛) − 𝑟(𝑘 + 𝑛) 𝑇𝑁

𝑛=0 𝑄 𝑧 𝑘 + 𝑛 −
𝑟(𝑘 + 𝑛) + 𝜆𝜔²(𝑘 + 𝑛)

 (21)

 2) The control functions and the generated paths: To have

good possibilities to avoid obstacles, we used linear type

control functions u (v, ) in Figs. 5 (a)-(b). The parameters p1

and p3 denote the speed and turning respectively to achieve in

𝑇0 + 𝑇𝑃
2

 and p2, p4 the parameters of the speed and the

turning to reach by T0 + TP . TP is the horizon of predictions.

Fig. 5 (a).Input functions for the speed

Fig. 5 (b).Input functions for the steering

 3) Constraints: These parameters must meet a number of

constraints with respect to maximum and minimum speed

(𝛎𝐦𝐢𝐧, 𝛎𝐦𝐚𝐱) and steering (𝛏𝐦𝐢𝐧, 𝛏𝐦𝐚𝐱):

𝜈min ≤ 𝑝1 ≤ 𝜈max

𝜈min ≤ 𝑝3 ≤ 𝜈max

𝜉min ≤ 𝑝2 ≤ 𝜉max

𝜉min ≤ 𝑝4 ≤ 𝜉max

 (22)

 From this group of control functions, a group of trajectories

is generated as shown in fig. 6. By simply varying each
parameter values, we obtain a wide variety of movement
possibilities. The Predictive control requires a linear kinematic
model giving in [16]. It is based on the following model,
consisting for monitoring a straight line:

 𝑠 = 𝜗. cos(𝜃 − 𝜓) (23)

 𝑑 = 𝜗. sin 𝜃 − 𝜓 (24)

 𝜃 = 𝜔 (25)

 Where 𝐬 is the distance to the next intersection. This model

can be linearized around the operating point (𝐝 = 𝟎,𝛉 − 𝛙 =
𝛉𝐞 = 𝟎), this gives:

d = υ. θe

θ e = ω
 (26)

 And can be discretized with a sampling period h:

 𝑑(𝑘 + 1) = 𝑑(𝑘) + ℎ. 𝜐. 𝜃(𝑘) − ψ(𝑘) +
ℎ

2

 𝜃(𝑘 + 1) = 𝜃(𝑘) + ℎ. 𝜔(𝑘) (27)

Fig. 6. Setting the parameters of the predictive control

 The equations can be writing in state spaces representation:

𝑑(𝑘 + 1)
𝜃(𝑘 + 1)

 =
1
0

h𝜐
1

𝑑(𝑘)
𝜃(𝑘)

 +
ℎ2

2
𝜐

ℎ
 𝜔 𝑘 +

0
0

 −h𝜐
 0

0
ψ(𝑘)

 (28)

 Or in compact form it is writing:

 𝑧(𝑘 + 1) = 𝐵. 𝑧(𝑘) + 𝐵𝜔 . 𝜔(𝑘) + 𝐵𝑟 . 𝑟(𝑘) (29)

 The criterion chosen to minimize the horizon is as
following:

 𝐽 𝑘 = 𝜆𝜔2 𝑘 + 𝑛 + 𝑧 𝑘 + 𝑛 −𝑁

𝑛=0

 𝑟 𝑘 + 𝑛 𝑇 𝑄 𝑧 (𝑘 + 𝑛) − 𝑟(𝑘 + 𝑛)
 (30)

Where z is the predicted output, Q is the Weighting matrix,

 is a scalar weight and N is the horizon.  : A scalar weight
Using (29) in (30), we have the following:

𝐽(𝑘) = 𝑍 (𝑘) − 𝑅(𝑘)
𝑇
𝐼𝑄 𝑍 (𝑘) − 𝑅(𝑘) + 𝜆Ω𝑇(𝑘)Ω(𝑘)

 (31)

 Where

𝑍 (𝑘) =
𝑧 (𝑘\𝑘)
⋮
𝑧 (𝑘 + 𝑁\𝑘)

 = 𝐹𝑧(𝑘) + 𝐺𝜔Ω(𝑘) + 𝐺𝑟𝑟(𝑘)

 (32)

Ω 𝑘 = 𝜔 𝑘 ⋯𝜔 𝑘 + 𝑁
𝑇

 (33)

 𝑅 𝑘 = 𝑟 𝑘 ⋯ 𝑟 𝑘 + 𝑁
𝑇

 =
0
Ψ(𝑘)

𝑇

=
0
ψ(𝑘)

⋯
⋯

0
ψ(𝑘 + 𝑁)

𝑇

 (34)

 4) The predictive algorithm: The goal is to find the control
sequence ω k ; 1 K n  that minimizes J (k).

 Ω(𝑘) = −𝐿𝑧𝑧(𝑘) − 𝐿𝑟𝑅(𝑘) (35)

Where

𝐿𝑧 = 𝜆 + 𝐺𝜔

𝑇𝐼𝑄𝐺𝜔
−1
𝐺𝜔
𝑇𝐼𝑄𝐺𝜔𝐹

𝐿𝑟 = 𝜆 + 𝐺𝜔
𝑇𝐼𝑄𝐺𝜔

−1
𝐺𝜔
𝑇𝐼𝑄 𝐺𝑟 − 1

 (36)

In fact only the next order ω(k) is applied to the system.
Therefore only the first line of Lz and the two first line of Lr .
That gives the following:

 𝜔(𝑘) = −𝑘𝜃𝜃(𝑘) − 𝑘𝑑𝑑(𝑘) − 𝐾ΨΨ(𝑘)

 (37)

Where kd and kθ are scalar and vector Kψ as [1 × (N + 1)] ψ

multiplying the reference vector ψ(k)
In the case of a turn (sequence of two lines), the vector
reference has the following form:

 ψ k = ((ψ
1
⋯ψ

1
, ψ

2
⋯ψ

2
)T (38)

V. IMPLEMENTATION AND ROBOT CONSTRUCTION

A. Architecture

 A Raspberry Pi module will contain data processing. An
application will play the role of a planner. Indeed it's the path
provider, at first it will provide several consecutive points that
the robot must cross to reach its final goal. The architecture is
shown in Fig 7.

Fig. 7. System Architecture

 The synthesis of the two regulators in cascade was made
and discussed. We must now put it in common and do all the
required adaptations. The block diagram in Fig. 8. shows the
general principle of the regulation.

Fig. 8. General functional regulation

 The block "strategy" is the artificial intelligence of the
robot. It dictates the way and the desired velocity. A
simulation of this control principle has been made on the
software Matlab Simulink simulation. This optimizes some
parameters to save time on the actual implementation.
 The best results of simulations are shown in Fig 9. We see
the reference path dotted line and how far the robot follows
the line. It is noted that even with an initial position outside
path (the angle is also set to a divergent path), the robot hunt
although the way.

Fig. 9 - Simulation Results

 The MEMS (microelectromechanical systems) chip of the
6-axis MPU-6050-gyroscope-accelerometer is very accurate
with an analog-digital conversion of 16 bits simultaneously on
each connection and an I2C interface. The reading of this
sensor measurement is easy.
 The sensor contains a FIFO register of 1024 bytes that the
Arduino microcontroller can read, being informed by an
interrupt signal. The module operates as a slave on the I2C
bus with respect to the Arduino (SDA pins, SLC) but can also
control another downstream device with AUX and AUX-DA-
CL. Its consumption is low with 6 activated sensors.
 The sensor has a Digital Motion Processor able to do quick
calculations directly on the chip from the raw sensor
measurements but it is very slow. It is therefore easier to
process raw measurements on the Arduino board. The
assembled robot is shown in Fig. 11.

Fig. 11. Assembled parts of the Robot

Here are the experimental results on the Robot in Fig 12.

Fig. 12. The robot following the path and responding to constraints

VI. CONCLUSION

 The purpose of this work was to control a robot on a path.
The robot was controlled through state method and on a path
according an improved control law. These two controllers in
cascade made it possible to follow a path. A simulation
allowed to find the correct settings required for
implementation on the real system.

REFERENCES

[1] F. Grasser, A. D’arrigo, S. Colombi and A. Rufer, “Joe: A
Mobile, Inverted Pendulum”, IEEE Transaction on Industrial
Electronics,2002.

[2] R. C. Ooi, “Balancing a Two-Wheeled Autonomous Robot”,
Final Year Thesis, The University of Western Australia School of
Mechanical Engineering, Faculty of Engineering and
Mathematical Sciences University of Western Australia, Australia
2003.

[3] K. C. R. Ho, “Balancing Wheeled Robot”, Research Project,
University of Southern Queensland, Australia. 2005.

[4] R. Grepl, “Balancing Wheeled Robot: Effective Modelling,
Sensory Processing And Simplified Control”, Engineering
Mechanics, 16 (2), pp.141–154,2009.

[5] Y. Takita, H. Date and H. Shimazu, “Competition of Two-wheel
Inverted Pendulum Type Robot Vehicle on MCR Course”, The
2009 IEEE/RSJ International Conference on Intelligent Robots
and Systems,5578-5584, 2009.

[6] Y. O. Chee and M. S. Z. Abidin, “Design and Development of
Two Wheeled Autonomous Balancing Robot”, Student
Conference on Research and Development, 2006.

[7] S. W. Nawawi, M. N. Ahmad and J. H. S. Osman, “Real-Time
Control of a Two-Wheeled Inverted Pendulum Mobile Robot”,
World Academy of Science, Engineering and Technology,214-
220, 2008.

[8] C. C. Tsai, C. K. Chan and Y. H. Fan, “Planned Navigation of a
Self-balancing Autonomous Service Robot”, IEEE International
Conference on Advanced Robotics and Its Social Impacts, vol
6764, 2008.

[9] A. Micaelli, “Trajectory tracking for unicycle-type and two-
steering-wheels mobile robots”, Sophia-Anitpolis, France: Institut
National de Recherche en Automatique er en Automatique, 1993.

[10] J. S. Hu, M. C. Tsai, F. R. Hu and Y. Hori, “Robust Control For
Coaxıal Two-Wheeled Electrıc Vehıcle”, Journal of Marine
Science and Technology, pp 172-180,2010.

[11] G. Chi, J. Hausbach and B Hunter, “Segbot”, Senior Design
Project, University of Illinois at Urbana-Champaign, USA , 2005.

[12] Bock, H.G., & Plitt, K.J, “A multiple shooting algorithm for
direct solution of optimal control problems”, 9th IFAC world
congress Budapest. Pergamon Press, 1984.

[13] G. Klancar, Skrjanc, I, “Tracking-error model-based predictive
control for mobile robots in real time”, Robotics and Autonomous
Systems, 2007.

[14] E. Courtial,“Commande predictive et estimation d’état de
systèmes non linéaires », rapport de thèse université Claude
Bernard – Lyon.,1996.

[15] T. Vallius and J. Röning, “Embedded Object Concept: Case
Balancing Two-Wheeled Robot”, Proceedings of the SPIE, Vol.
6764, 2007.

[16] M.Bak. N.K.Poulsen, O.Ravn, “Path Following Mobile Robot in
the Presence of Velocity Constraints”, Kongens Lyngby,
Denmark : Technical University of Denmark, 2000.

