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Abstract: This paper addresses design and path following 

control problem of a nonholonomic Two-Wheeled Inverted 

Pendulum Mobile Robot. We propose control architecture based 

on two control layers. A speed inner loop control scheme is first 

designed based on state feedback technique to ensure stability of 

the inverted structure of the robot. A second outer loop control 

scheme is proposed to help the robot navigate along a desired 

path formed by a set of way points. It is designed inspiring the 

model predictive control technique. The elements of the 

predictive control, which are the cost function, controls and 

constraints, must be defined and specified: the use of different 

trajectories group in the control can adapt the behavior of the 

robot to different displacement phases. 
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I.   INTRODUCTION 

The problem of nonholonomic systems control has 
attracted numerous investigations in the past. A thorough 
studied case, with great practical significance, is the wheeled 
mobile robot with a kinematic model similar to a unicycle [1] 
[2]. The differentially driven mobile robots that are very 
common in practical applications also have the same 
kinematic model. Although many researchers coped with the 
more difficult problem of stabilizing dynamic models for 
different types of mobile robots [3] [4] [5] [6], the basic 
limitations of mobile robot control still come from their 
kinematic model. Kinematic control laws are also very 
important from the practical point of view, since the wheel-
velocity control is often implemented locally on simple micro-
controller based hardware. 

Traditionally, the problem of mobile robot control has 
been approached by stabilization point or by redefining the 
problem as a tracking control one. There are also some 
approaches that tackle both problems simultaneously. We 
believe that the tracking control approach is somewhat more 
appropriate, since the nonholonomic constraints and other 
control goals (obstacle avoidance, minimum travel time, and 

minimum fuel consumption) are implicitly included in the 
path-planning  procedure [7] [8].  

We were looking for to develop certain tools, as the paths 
optimization methods, and adapt them to our problem 
navigation. The aim was to get an under constraints 
optimization algorithm which can be implemented in a real-
time application. 

The navigation method that we propose follows several 
steps: to enable the robot to join the path provided by the 
modeling environment, a catch curve is generated with the 
authors approach in [9]. Based on the knowledge of the model 
of the robot and its constraints, feasible trajectories can be 
generated on a given time horizon. A constraint optimization 
algorithm will then determine the closest feasible path by the 
robot to the reference trajectory under constraints that we have 
developed. Finally, the generated control law is provided to 
the robot actuators, and applied according to a chosen 
sampling time before reconsidering all the navigation process 
reinitiating. 

The problem statement is given in Section II. The 
kinematic model and the Control design Approach are 
described in Section III. The speed and predictive control 
design are developed in Section IV. In Section V, 
implementation is discussed. The conclusions are stated in 
Section VI.  

II.    PROBLEM STATEMENT 

Assume a two-wheeled, differentially driven, mobile robot 
like the one depicted in Fig. 1, where (x, y) is the wheel-axis-
centre position and θ is the robot orientation. The kinematic 
motion equations of such a mobile robot are equivalent to 
those of an unicycle. Robots with such architecture have a 
nonholonomic constraint of the form: 

 

         γ  . cos 𝜃 𝑡  − 𝜘 ̇. sin 𝜃 𝑡 = 0                   (1) 
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Fig. 1. Mobile inverted pendulum 
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Where θ r  (t) and θ l  (t) are the angular velocity of the right 

wheel and the angular velocity of the left wheel. 

III.   THE KINEMATIC MODEL AND THE CONTROL DESIGN 

It is possible to model the system described above by the 
Newton-Euler method.  

A.   TWIPMR modeling  

Modeling assumptions: 

- The motor correctly filter the PWM. 
- The inertia of the motor itself is neglected compared to 

the inertia of the wheel. 
- Motor inductance is neglected. 
- Both motors have identical parameters.  

 

    1)   Mechanical equation of the motor: Consider the 

general characteristics of the engine we find: 

 
                      Ui(t) = Ri .ii(t)                                                   (3) 

                    𝜃 𝑖(𝑡). 𝐼𝑖 =  𝑀𝑖
𝑗𝑛

𝑖=1 (𝑡)                                       (4) 

      𝑀𝑖
𝑗𝑛

𝑖=1 (𝑡) = 𝑀𝑖
1(𝑡) + 𝑀𝑖

2(𝑡) + 𝑀𝑖
3(𝑡)                         (5)     

                     𝑀𝑖
1(𝑡) = 𝑘𝑖 . 𝑛𝑖 . 𝑖𝑖(𝑡)                                            (6) 

                   𝑀𝑖
2(𝑡) = −𝐹𝑖(𝑡). 𝑟𝑖                                              (7) 

                  𝑀𝑖
3(𝑡) = −𝑓𝑖 . 𝜃 𝑖(𝑡)                                              (8) 

    2)   Motion equations of the robo: The moment of inertia is 

on the axis center of the wheels 

 
              𝐼0 . 𝜃 0(𝑡) = 𝑟0.  𝐹𝑟(𝑡) − 𝐹𝑙(𝑡)                                 (9) 

     𝑚0 . 𝑥 (𝑡) =  𝐹𝑁
𝑛=0 = 𝐹𝑟(𝑡) − 𝐹𝑙(𝑡)                              (10) 

             𝜃 0 (𝑡) =
𝜃 𝑟 (𝑡).𝑟𝑟−𝜃 𝑙 (𝑡).𝑟𝑙

2.𝑟0
                                         (11) 

                𝑥 0 (𝑡) =
𝜃 𝑟 (𝑡).𝑟𝑟+𝜃 𝑙 (𝑡).𝑟𝑙

2
                                      (12) 

The state model can then be discretized to get the form below 
with system sampling period chosen to 10 ms. 

X(k+1) = . X(k) +  . U (k) 

   Y(k) = C . X(k) + D. U(k) 

                                                                                             (13) 

 , , C, D: matrices giving by Matlab calculation 

 

B.   Control design 

In the literature, the control law for the tracking path is 
based on the assumption that the robot speed limits are 
directly transmitted [10] [11]. This hypothesis corresponds to 
a control in perfect speed. 

This separation between low-level (robot speed control) 
and High-level (tracking path) in Fig. 2 appears to be a good 
solution for many reasons: 

- Appropriate segregation of duties for readability 

- Best potential for reusability 

- Debugging easier when implementing 

 

IV.   THE SPEED AND TRAJECTORY CONTROL  

 

A.   Control speed 

     Based on the discrete state model, it is possible to 
synthesize a controller state. The choice fell on the optimal 
control [12] that responds to the needs perfectly as shown in 
bloc diagram Fig 3. 

The cost function to be minimized is:  

          𝐽 =
1

2
   𝑥𝑇(𝑘)𝑄1𝑥(𝑘) + 𝑢𝑇(𝑘)𝑄2𝑢(𝑘) 𝑁
𝑘=0     ( 1 4 ) 

    We must therefore choose the matrices Q1 and Q2. They 

are selected positive diagonals. The weight of the position is 

zero. The weight of the speeds is much higher than the voltage 

of the engine. 

 

 

 
Fig. 2. The two controllers in cascade  

 

 

 

 



Matrices:  
 

          𝑄1 =  

0
0
0
0

          0
     100′000
          0
          0

   

 0
 0
 0
 0

      0
      0
      0
  100′000

                          (15) 

 

          𝑄2 =  
10
0

 
  0
10
                                                             (16) 

 
The dlqr control Matlab gives the optimum gain. Thus, the 
voltage applied to closed loop is: 
 

                            U(k) = KG. X(k)                                       (17) 

 

Where KG is a Gain obtained by Matlab calculation     
                                

 
 

Fig. 3.  Block diagram of the control speed 

 

B.   Path Tracking 

     From the information provided by the planer, a remedial 

curve, connecting the current position of the robot and the 

desired position can be determined. This curve is a purely 

geometric, which is not related to time, but that can take into 

account certain geometric constraints robot (size, turning 

radius). Angular velocity ω = θ of the robot is used as a 

control variable as shown in fig. 4. 

 

 
 

Fig. 4.  Path Followed by robot 

 

The purpose of the proposed control law is to reduce both the 

error in distance and orientation: 

                                  e =  - des                                                               (18) 

It is given in its simplest form by: 
 

                        ω = υ.  p(sR′) − k1. d − k2 . θe                  (19) 

 

     Where sR’ is the curvilinear abscissa of the point 𝑅0. k1 

and k2  are two positive constants. Constant values for 
limiting the oscillations can be obtained in the case of a 
straight path: 
 

                                          
k1 = ξ2

k2 = 2ζξ
                                     (20) 

 

C.    Our approach of the Predictive Control 

     1)  The cost function: This cost function calculates the 

square error between the reference trajectory and the robot 

path, by weighting differently the various components of the 

state of the robot and also by weighting differently the 

terminal error and the tracking error of the course [13] [14] 

[15]. 

 
    𝐽(𝑘) =    𝑧 (𝑘 + 𝑛) − 𝑟(𝑘 + 𝑛) 𝑇𝑁

𝑛=0 𝑄 𝑧  𝑘 + 𝑛 −
𝑟(𝑘 + 𝑛) + 𝜆𝜔²(𝑘 + 𝑛)

 

     

                                                                                             (21)   

                                                     

    2) The control functions and the generated paths: To have 

good possibilities to avoid obstacles, we used linear type 

control functions u (v, ) in Figs. 5 (a)-(b). The parameters p1 

and p3 denote the speed and turning respectively to achieve in 

𝑇0 + 𝑇𝑃
2

 and p2, p4 the parameters of the speed and the 

turning to reach by T0 + TP . TP is the horizon of predictions. 

 

 

 
Fig. 5 (a).Input functions for the speed 



 
Fig. 5 (b).Input functions for the steering 

 

   3) Constraints: These parameters must meet a number of 

constraints with respect to maximum and minimum speed 

(𝛎𝐦𝐢𝐧, 𝛎𝐦𝐚𝐱) and steering (𝛏𝐦𝐢𝐧, 𝛏𝐦𝐚𝐱): 

 

                              

𝜈min ≤ 𝑝1 ≤ 𝜈max

𝜈min ≤ 𝑝3 ≤ 𝜈max

𝜉min ≤ 𝑝2 ≤ 𝜉max

𝜉min ≤ 𝑝4 ≤ 𝜉max

                                  (22) 

 
    From this group of control functions, a group of trajectories 

is generated as shown in fig. 6.  By simply varying each 
parameter values, we obtain a wide variety of movement 
possibilities. The Predictive control requires a linear kinematic 
model giving in [16]. It is based on the following model, 
consisting for monitoring a straight line: 
 

                         𝑠 = 𝜗. cos(𝜃 − 𝜓)                                      (23) 

                         𝑑 =  𝜗. sin 𝜃 − 𝜓                                      (24) 

                         𝜃 =  𝜔                                                         (25) 

 

    Where 𝐬 is the distance to the next intersection. This model 

can be linearized around the operating point (𝐝 = 𝟎,𝛉 − 𝛙 =
𝛉𝐞 = 𝟎), this gives: 

                            
d = υ. θe

θ e = ω
                                             (26) 

    And can be discretized with a sampling period h: 
 

  𝑑(𝑘 + 1) = 𝑑(𝑘) + ℎ. 𝜐.  𝜃(𝑘) − ψ(𝑘) +
ℎ

2
  

                𝜃(𝑘 + 1) = 𝜃(𝑘) + ℎ. 𝜔(𝑘)                                (27) 

 

 
 

Fig. 6. Setting the parameters of the predictive control 

 

    The equations can be writing in state spaces representation: 

 

 
𝑑(𝑘 + 1)
𝜃(𝑘 + 1)

 =   
1
0

h𝜐
1
  

𝑑(𝑘)
𝜃(𝑘)

 +  
ℎ2

2
𝜐

ℎ
 𝜔 𝑘 +

                              
0
0

  −h𝜐
     0

  
0
ψ(𝑘)

           

                                                                                             (28)                                                                                 

 

    Or in compact form it is writing: 
 

              𝑧(𝑘 + 1) = 𝐵. 𝑧(𝑘) + 𝐵𝜔 . 𝜔(𝑘) + 𝐵𝑟 . 𝑟(𝑘)          (29) 

 
   The criterion chosen to minimize the horizon is as 
following: 

                               
                       𝐽 𝑘 = 𝜆𝜔2 𝑘 + 𝑛 +   𝑧  𝑘 + 𝑛 −𝑁

𝑛=0

                                         𝑟 𝑘 + 𝑛  𝑇 𝑄 𝑧 (𝑘 + 𝑛) − 𝑟(𝑘 + 𝑛)   
                                                                                             (30) 

Where z is the predicted output, Q is the Weighting matrix, 

 is a scalar weight and N is the horizon.  : A scalar weight  
Using (29) in (30), we have the following:  

 

𝐽(𝑘) =  𝑍 (𝑘) − 𝑅(𝑘) 
𝑇
𝐼𝑄 𝑍 (𝑘) − 𝑅(𝑘) + 𝜆Ω𝑇(𝑘)Ω(𝑘) 

                                                                                             (31) 

    Where 

 

          

𝑍 (𝑘) =  
𝑧 (𝑘\𝑘)
⋮
𝑧 (𝑘 + 𝑁\𝑘)

 = 𝐹𝑧(𝑘) + 𝐺𝜔Ω(𝑘) + 𝐺𝑟𝑟(𝑘)

                                                                                              (32) 

                      

Ω 𝑘 =  𝜔 𝑘 ⋯𝜔 𝑘 + 𝑁  
𝑇

                      (33) 

                      𝑅 𝑘 =  𝑟 𝑘 ⋯ 𝑟 𝑘 + 𝑁  
𝑇
          



           =  
0
Ψ(𝑘)

 
𝑇

=  
0
ψ(𝑘)

⋯
⋯

0
ψ(𝑘 + 𝑁)

 
𝑇

                        (34) 

 
    4)  The predictive algorithm: The goal is to find the control 
sequence ω k ; 1 K n   that minimizes J (k). 
 

                    Ω(𝑘) = −𝐿𝑧𝑧(𝑘) − 𝐿𝑟𝑅(𝑘)                            (35) 

Where 

                
𝐿𝑧 =  𝜆 + 𝐺𝜔

𝑇𝐼𝑄𝐺𝜔 
−1
𝐺𝜔
𝑇𝐼𝑄𝐺𝜔𝐹

𝐿𝑟 =  𝜆 + 𝐺𝜔
𝑇𝐼𝑄𝐺𝜔 

−1
𝐺𝜔
𝑇𝐼𝑄 𝐺𝑟 − 1 

                  (36) 

 

In fact only the next order  ω(k)  is applied to the system. 
Therefore only the first line of Lz  and the two first line of Lr . 
That gives the following: 
 

             𝜔(𝑘) = −𝑘𝜃𝜃(𝑘) − 𝑘𝑑𝑑(𝑘) − 𝐾ΨΨ(𝑘)
 
               (37) 

 
Where kd and kθ  are scalar and vector Kψ  as [1 × (N + 1)] ψ 

multiplying the reference vector ψ(k) 
In the case of a turn (sequence of two lines), the vector 
reference has the following form: 
 

                       ψ k = ((ψ
1
⋯ψ

1
, ψ

2
⋯ψ

2
)T                       (38) 

V.    IMPLEMENTATION AND ROBOT CONSTRUCTION 

 

A.   Architecture 

     A Raspberry Pi module will contain data processing. An 
application will play the role of a planner. Indeed it's the path 
provider, at first it will provide several consecutive points that 
the robot must cross to reach its final goal. The architecture is 
shown in Fig 7. 

 

 
 

Fig. 7. System Architecture 

 

  
      The synthesis of the two regulators in cascade was made 
and discussed. We must now put it in common and do all the 
required adaptations. The block diagram in Fig. 8. shows the 
general principle of the regulation. 

 

 
Fig. 8. General functional regulation 

 

    The block "strategy" is the artificial intelligence of the 
robot. It dictates the way and the desired velocity. A 
simulation of this control principle has been made on the 
software Matlab Simulink simulation. This optimizes some 
parameters to save time on the actual implementation. 
    The best results of simulations are shown in Fig 9. We see 
the reference path dotted line and how far the robot follows 
the line. It is noted that even with an initial position outside 
path (the angle is also set to a divergent path), the robot hunt 
although the way.  
 
 

 

 
Fig. 9 - Simulation Results      

 

 



     The MEMS (microelectromechanical systems) chip of the 
6-axis MPU-6050-gyroscope-accelerometer is very accurate 
with an analog-digital conversion of 16 bits simultaneously on 
each connection and an I2C interface. The reading of this 
sensor measurement is easy. 
     The sensor contains a FIFO register of 1024 bytes that the 
Arduino microcontroller can read, being informed by an 
interrupt signal. The module operates as a slave on the I2C 
bus with respect to the Arduino (SDA pins, SLC) but can also 
control another downstream device with AUX and AUX-DA-
CL. Its consumption is low  with 6 activated sensors. 
     The sensor has a Digital Motion Processor able to do quick 
calculations directly on the chip from the raw sensor 
measurements but it is very slow. It is therefore easier to 
process raw measurements on the Arduino board. The 
assembled robot is shown in Fig. 11. 
 
 

 
 

Fig. 11.  Assembled parts of the Robot 

 

Here are the experimental results on the Robot in Fig 12. 

 

 
 

Fig. 12. The robot following the path and responding to constraints 

 

 

VI.    CONCLUSION 

 
      The purpose of this work was to control a robot on a path. 
The robot was controlled through state method and on a path 
according an improved control law. These two controllers in 
cascade made it possible to follow a path. A simulation 
allowed to find the correct settings required for 
implementation on the real system. 
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