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Abstract— This paper presents a new approach for dealing 
with stability and stabilization of discrete time T-S fuzzy 
switched systems under arbitrary switching. The proposed 
method applies the vector norms concept to a specific form of 
matrix called arrow form matrix. The application of Borne and 
Gentina practical criterion to the comparison system yields to 
simple algebraic stability conditions and thus avoids the search 
of a common Lyapunov function. 

I. INTRODUCTION 

Switched systems are a special form of hybrid dynamical 
systems composed of a family of continuous-time or discrete-
time subsystems and a rule that governs the switching among 
them. 

Advances in the theory of both hybrid systems and fuzzy 
systems has given rise to fuzzy switched systems as an answer 
to more complicated real systems analysis and synthesis 
requirements such as multiple nonlinear systems, switched 
nonlinear systems and second-order nonholonomic systems. A 
Takagi-Sugeno fuzzy switched system is a combination of a 
hybrid system and multiple fuzzy models [1]. Originally 
inspired from the concept of sector nonlinearity, Takagi-
Sugeno modeling idea consists of partitioning the nonlinear 
dynamics of a system into several locally linearized submodels 
so that the overall nonlinear system can be represented by a 
sufficiently accurate approximation [2]. Fuzzy modeling and 
control is a universal approximation tool and a reliable 
approach to handle complex and ill-defined systems. 

Despite the considerable progress in the analysis of 
nonlinear systems, stability study of switched systems [3] and 
in particular of fuzzy switched systems is still complex [4]. In 
fact, the example of asymptotically stable subsystems which 
lead to an unstable behavior of the overall system, due to a 
specific switching sequence, is well known. Besides, the case 
of unstable subsystems that, via a particular switching law, 
yields to a stable global system also exists. 

 
 

 

Stability analysis of T-S model-based switched systems 
has been conducted mainly on the basis of Lyapunov stability  

theory [5], [6], [7]. The first approach, based on common 
quadradic Lyapunov functions, requires the existence of a 
common symmetric positive definite matrix P to satisfy 
Lyapunov stability condition for all switching regions and 
local fuzzy systems. This method has proved to be 
conservative and even sometimes, P  may not exist for many 
complex highly nonlinear systems. This conservativeness 
arises from the ‘strict’ feature of the Lyapunov function since 
it depends neither on the switching functions nor on the local 
fuzzy weighting functions. The switching Lyapunov function, 
considered as a piecewise quadratic Lyapunov function, 
represents an alternative to develop less conservative stability 
results and consists of local quadratic Lyapunov functions 
constructed in each switching region. The control design of T-
S fuzzy switched systems is carried out by means of the so-
called Parallel Distributed Compensation (PDC) scheme [6], 
[8], [9]. This model-based procedure consists of designing, for 
each local linear model of each subsystem, a linear feedback 
control. The resulting overall subcontroller is obtained by 
fuzzily blending of each individual linear controller. 

To overcome limitations due to the existence of such 
Lyapuov functions, we propose, in this paper, to study the 
stability of T-S model-based switched systems under arbitrary 
switching through the study of the convergence of a regular 
vector norm, associated to a specific characteristic matrix 
form, called arrow form matrix [10]. The vector norm 
approach [11], [12], [13] [14], [15], based on the overvaluing 
principle [16], has a major advantage as it deals with a large 
class of systems since no restrictions are made on the matrices 
of states equations. The application of vector norms concept to 
switched systems has already been introduced in [17], [18], 
[19]. 
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The organization of the paper is as follows: section II gives 
a description of the considered class of discrete time T-S fuzzy 
switched systems. Proposed stability and stabilization 
conditions are given in section III. Section IV illustrates the 
obtained results through an example. Finally, some concluding 
remarks are given in section V. 

II. DISCRETE TIME T-S FUZZY SWITCHED SYSTEMS-PROBLEM 

FORMULATION 

Consider the following discrete-time switched system: 

 
( ) ( )

( )

( 1) (.) ( ) (.) ( )

( ) (.) ( )

k k

k

x k A x k B u k

y k C x k

 



  
 

  (1) 

where ( ) nx k   is the state vector, ( ) mu k   is the control 

input, ( ) qy k   is the output vector, ( ) (.)
n n

kA
 , 

( ) (.)
n m

kB
 , ( ) (.)

q n
kC

 . ( )k :  1,2,..,I N    

is the switching signal assumed to be available in real time 
and N  is the number of subsystems. 
Therefore, the switched system is composed of N  discrete-
time subsystems which are expressed as: 

 
( 1) (.) ( ) (.) ( )

,
( ) (.) ( )

i i

i

x k A x k B u k
i I

y k C x k

  
 

  (2) 

where (.)iA , (.)iB  and (.)iC  are matrices of appropriate 

dimensions. 
Using the Takagi-Sugeno fuzzy modeling method, the thl  

fuzzy rule, associated with the thi  discrete-time subsystem i  
being active at instant k , can be defined as: 
 
Rule l  for subsystem i : 

IF 1x  is 1
liM  and 2x  is 2

liM  and …and nx  is n
liM  

THEN  

 
( 1) ( ) ( )

,
( ) ( )

li li

li

x k A x k B u k
i I

y k C x k

  
 

   (3) 

where 1( )x k , 2 ( )x k ,…, ( )nx k  are the premise variables, j
liM  

are the fuzzy sets, r  and n  are the number of fuzzy rules and 
state variables respectively. 
By the product inference engine and the center of average 
defuzzification, the final output of the thi  subsystem is 
inferred as: 

  
1

( 1) ( ( )) ( ) ( )
r

li li lil
x k h x k A x k B u k


     (4) 

where:  

 1

11 1

( ( ))
( ( ))

( ( ))
( ( ))( ( ))

n
j

li j
j li

li n rr
j

lili j
ll j

M x k
x k

h x k
x kM x k







 

 






  (5)

( ( ))j
li jM x k  is the firing strength of membership function j

liM

. It is assumed that ( ( )) 0li x k   and 
1

( ( )) 0
r

li
l

x k


  

1,2,..,l r  . Hence, ( ( )) 0lih x k   and 
1

( ( )) 1
r

li
l

h x k


 . 

By introducing ( )i k  as an exogenous function defining the 

switching law, 

 
1 if subsystem is active

( ) , 1,2,.,
0 otherwisei

i
k i N


 


  (6) 

switched fuzzy system can then be represented by: 

  
1 1

( 1) ( ) ( ( )) ( ) ( )
N r

i li li lii l
x k k h x k A x k B u k

 
      (7) 

A PDC controller scheme is employed to deal with the 
stabilization of fuzzy switched systems. The thl  rule of the 
switching PDC controller stabilizing subsystem (4) is given 
by: 
Rule l  for controller of subsystem i : 

IF 1x  is 1
liM  and 2x  is 2

liM  and …and nx  is n
liM  

THEN  
 ( ) ( ), 1, 2,..,liu k K x k l N     (8) 

where 0 1 1n
li li li liK k k k      is the local feedback gain 

vector. 
The final output of controller (8) is represented by: 

 
1

( 1) ( ( )) ( )
r

li lil
x k h x k K x k


     (9) 

Substituting (9) into (7), closed-loop representation of the T-
S fuzzy switched system is: 

 1 1 1
( 1) ( ) ( ( )) ( ( ))

( ) ( )

N r r

i li qii l q

li li qi

x k k h x k h x k

A B K x k


  

 



  
  (10) 

In the sequel, ( ( ))lih x k  and ( ( ))qih x k  will be simplified to 

lih  and qih . 

III. NEW STABILITY AND STABILIZATION CONDITIONS FOR T-
S DISCRETE TIME SWITCHED SYSTEMS 

A. Main results 

First, consider system (1) in the autonomous mode (u=0): 

 ( ) ( )1 1
( 1) ( ) ( )

N r

i l k l ki l
x k k h A x k 

 
      (11) 

Theorem 1. 

The T-S unforced fuzzy switched system (11) is globally 
asymptotically stable under an arbitrary switching law 

( )k i I    if matrix ( )n DI M  is an M-matrix, where: 

  ( ) ( )1
max

r

D l k l kli I
M h A 

    (12) 

Proof. 

Let us consider system (11) under an arbitrary switching 
law ( )k i I    and let n 

  ( m    1,..,m n  ). 

Consider the following common radially unbounded 
Lyapunov functional for system (11): 

 ( ( ), ) ( ) ,V x k k x k    (13) 

Thus, its difference is written as: 



  

 

 
( ) ( )1

( ) ( )1

( ( ), ) ( ( 1), 1) ( ( ), )

( 1) , ( ) ,

( ) , ( ) ,

max ( ) , ( ) ,

( ) ( ) ,

r

l k l kl

r

l k l kli I

D n

V x k k V x k k V x k k

x k x k

h A x k x k

h A x k x k

M I x k

 

 

 

 

 







    

  

 

 

 





  

and finally, 

 ( ( ), ) ( ) ( ) ,n DV x k k I M x k       (14) 

On the other hand, we assume that ( )n DI M  is an M-
matrix and according to the M-matrices properties, we can find 
a vector n 

  ( 0p   1,..,p n  ) such as 

( )T
n DI M     n 

  . 

It comes: 

 

1

( ) ( ) , ( ) , ( )

, ( ) ( ) 0

T
n D n D

n

p pp

I M x k I M x k

x k x k

 

 


    

    
 

 (15) 
This completes the proof of theorem 1. 

Theorem 2. 

The T-S fuzzy switched system (10) is globally 
asymptotically stable with a PDC switching controller (9) 
under arbitrary switching law ( )k i I    if matrix 

( )c
n DI M  is an M-matrix, with: 

  ( )maxc c
D k

i I
M A

   (16) 

and  

 ( ) 1 1
( ( )) ( ( ))( )

r rc
k li qi li li qil q

A h x k h x k A B K  
     (17) 

 
Proof. The same proof as theorem 1. 

B. Extension of the results to the case of systems defined by 
difference equations 

 
Let us consider discrete-time T-S model-based switched 

systems described by the following difference equations: 

 
1

1 1
0

( ) ( ) ( ) ( )
n

N r p
i li lii l

p

y k n k h a y k p u k


 


        (18) 

A change of variable of the form 1( ) ( ) ( )p px k x k y k p     

allows the system to be represented under its controllable 
form: 

  
1 1

( 1) ( ) ( ( )) ( ) ( )
N r

i li li lii l
x k k h x k A x k B u k

 
     

 (19) 
with: 

 

0 1

0 1 0 0

and
0 1 0

1

li li

n n
li li li

A B B

a a a

   
   
     
   
        



    

 



  (20) 

Then, relation (19) becomes : 

 

1 1 1

1 1 1

1 1 1

1 1

1 1 1

( 1) ( ) ( ) ( )

( ) ( ) ( )

( )( ( )

( ))

( )( ( ) ( ))

N r r

i li qi li li qii l q

N r r

i li qi li qii l q

N r r

i li qi lii l q

r r

qi li qiq l

N r r

i li li qi qii l q

x k k h h A B K x k

k h h A BK x k

k h h A x k

h h BK x k

k h A x k h BK x k









  

  

  

 

  

  

 

 

 

  
  
  

 
  

  

Hence,  

 1 1

1 1

( 1) ( ) ( ) ( )

( ) ( )

N r

i li li lii l

N r c
i li lii l

x k k h A BK x k

k h A x k




 

 

  



 
 

  (21) 

A change of base ( ) ( )z k Px k  of (21) under the arrow form 

gives : 

 
1 1

( 1) ( ) ( )
N r

i li lii l
z k k h M z k

 
      (22) 

where matrix 1 c
li liM P A P  is in the arrow form and P  is 

the corresponding passage matrix: 

 ( ) ( ) ( )

( ) ( ) ( )

1 2 1

2 2 2
1 2 1

1 1 1
1 2 1

1 1 1 0

0

=

0

1

n

n

n n n
n

P





 

   



-

-

- - -
-

é ù
ê ú
ê úa a aê ú
ê ú
a a aê ú

ê ú
ê ú
ê ú
ê úa a aê úë û

  (23) 

and  

 

1 1

1 1

(1) ( 1) ( )

0 0

0

0

0 0
li

n n

c c n c n
li li li

M



   

   



 

- -
-

é ùa bê ú
ê ú
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  (24) 

with: 

 

 

 

1 1

1

( )

1
( ) 1 1

1

 , = 1,..., 1

        , 1,..., 1

( )

c
li

n

j j q
q
q j

c j
li jA

n
c n n n
li li li j

j

 j n

P  j n

a k

  

 

 

 





 




   


     

    






  (25) 

In such conditions, if ( )p w  denotes a vector norm of w  such 

that 1 2( ) , ,..,
T

np w w w w    , it is possible by the use of the 

aggregation techniques to define a discrete time comparison 

system ( 1) ( )c
Dy k M y k   such that the pseudo-overvaluing 

matrix DM  is computed as follows: 



  

 

1

1

1 1

1

1

(1) ( 1) ( )

1

0 0

0

0

0 0

max max max

n

r r

li li
i I i I i I

l l

c
D

n

r
c c n c n

lili li li
l

M

h h h



   

   



 

-
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= =

-

-

=

b
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ê ú
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ê ú
ê úaê ú
ê ú
ê ú
ê úg g gê ú
ê úë û

å å å
  (26) 

Matrix ( )c
n DI M  is then given by: 

 

1

1

1

1

1 1

0 0

0

0(

0 0

1

1

)

1 n

c
n D

n

n n
D D D

I M

t t t



   
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

 

--
-

b

=

b

- - -

é ù- a -ê ú
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ê ú
ê ú- ê ú
ê ú- a -ê ú
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ê úë û

  (27) 

 

( )

1

( )

1

max 1,.. 1

max

r
c jj

D li li
i I

l

r
c nn

D li li
i I

l

t h j n

t h












   




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




  (28) 

The application of Borne and Gentina criterion to ( )c
n DI M   

leads to the new sufficient stability conditions of the closed 
loop system (21) stated by theorem 3. 

Theorem 3. 

The T-S fuzzy switched system (21) is globally 
asymptotically stable under arbitrary switching law 

( )k i I    if there exist j  ( 1,.., 1)j n  , j q   

j q   such as: 

i) 1 0, 1,..,j j N    (29) 

ii)  
11

1
1 1 0

nn j
D D j jj

t t  



      (30) 

 
Theorem 3. can be reduced to the corollary below. 
Corollary. 

The closed-loop T-S fuzzy system (21) is globally 
asymptotically stable under arbitrary switching ( )k i I    if 

the following conditions are met  0,1j  , j q  , 

j q  , for each i I , 1,.., 1j n   and 1,..,l r : 

i) 
1

( ) 0c
li

r

j li jA
l

h P 


   (31) 

ii) ( )

1

0
r

c n
li li

l

h 


   (32) 

iii) 

( )

1

1 ( ) 1

1
1

1 max

max (1 ) 0

r
c n

li li
i I

l

r
n c j

li j jlij i I
l

h

h



  




 
 



 
   

 
 

   
 



 
  (33) 

IV. ILLUSTRATIVE EXAMPLE 

 
As a numerical example, let us consider the two second-

order systems arbitrarily switching between each other and 
given by: 

 
2 2

1 1
( 1) ( ) ( ( )) ( )i li lii l

x k k h x k A x k
 

     

where: 

 11 21

0 1 0 1
,

0.6703 1.703 0.6703 1.77
A A

   
        

  

 12 22

0 1 0 1
,

0.905 1.905 0.819 1.819
A A

   
        

  

By means of switching PDC control with state feedback gain 

vectors 1 2
11 11 11K k k    , 1 2

21 21 21K k k    , 1 2
12 12 12K k k     

and 1 2
22 22 22K k k    . 

The closed loop system can then be written as follows: 

 
11 1 2

11 11

21 1 2
21 21

0 1
,

0.6703 1.703

0 1

0.6703 1.77

c

c

A
k k

A
k k

 
     
 

     

 
12 1 2

12 12

22 1 2
22 22

0 1

0.905 1.905

0 1

0.819 1.819

c

c

A
k k

A
k k

 
     
 

     

 

A change of base under the arrow form matrix gives: 

 1 1
11 11 21 211 2 1 2

11 11 21 21

1 1
, ,c cF P A P F P A P

 
   

    
      

   
  

1 1
12 12 22 221 2 1 2

12 12 22 22

1 1
,c cF P A P F P A P

 
   

    
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with: 
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The minimal pseudo-overvaluing matrix corresponding to the 
comparison system that will allow us to conclude to the 
stability of the initial system is: 
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For an arbitrary choice of 0.1   and  11 1 1.35K   , 

 21 1 1.35K   , 2
12 221.105K k     and 

2
22 220.919K k     and by applying the corollary, we can 

deduce the following stability conditions: 
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Stability domain is given by the adjustable parameter 2

22k  as 

a function of 11h : 

 2
11 22 110.186 0.919 0.153 1.399h k h      

i)  

 
 
 
Fig1. Stability domain given by 11h  function of 2

22k obtained 

from corollary  
 
In the case 11 0.5h = , 2

22 1.2k  , sampling time 0.2eT s= ,  the 

initial state vector    0 2 -1
T

x   and the switching sequence 

given in Figure 2 The simulation result of the system are 
shown in Figures 3 and 4, respectively which correspond to 
the evolution of states with respect to time and the norm state.  

 
Fig 2. Switching function between subsystems  

 

 
Fig 3. State responses of the system 

 
 

Figure 4. State’s norm 
 

V. CONCLUSION 

This paper proposes an alternative to common problems 
encountered when constructing common Lyapunov functions. 
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In fact, this method may need to solve a large number of 
Linear Matrix Inequalities especially when the number of 
fuzzy rules required to fully describe the system is high. 
Stability criteria presented are applicable under arbitrary 
switching which is a great benefit particularly when the 
switching law is unknown or uncontrollable and are 
appropriate to a large class of nonlinear systems. 
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